LEGGE 9 gennaio 1991, n. 10 RELAZIONE TECNICA

DDUO 12 Gennaio 2017 n. 176 DDUO 8 Marzo 2017 n. 2456 DDUO 18 Dicembre 2019 n. 18546

COMMITTENTE : SAR s.r.l.

EDIFICIO : **Edificio ricettivo**

INDIRIZZO: Via Guglielmo Marconi, Padenghe (BS)

COMUNE : Padenghe sul Garda

INTERVENTO : Nuova costruzione edificio ricettivo

Rif.: 25-011M_1.E0001

Software di calcolo : Edilclima - EC700 - versione 13

FORNONI ING. LUCA
VIA VITTORIO EMANUELE II, 1 - 25039 TRAVAGLIATO (BS)

RELAZIONE TECNICA DI CUI AL PUNTO 4.8 DELL'ALLEGATO 1 DEL DECRETO ATTUATIVO DELLA DGR 3868 DEL 17.7.2015

Nuove costruzioni, ristrutturazioni importanti di primo livello, edifici ad energia quasi zero

Un edificio esistente è sottoposto a ristrutturazione importante di primo livello quando l'intervento ricade nelle tipologie indicate nell'allegato A del decreto attuativo della DGR 3868 del 17.7.2015.

1. I	NFORM	AZIONI GENERALI						
Comun	ne di	Padenghe sul Garda			Provincia	BS		
_					•			
_	•	realizzazione di (specificare il	tipo di opere):					
Nuova	costru	zione edificio ricettivo						
fi	ini dell'a	(o il complesso di edifici) rient articolo 5, comma 15, del decr delle fonti rinnovabili di energia	eto del Presid	ente della Repubblic	a 26 agosto 1	1993, n. 412		
gli estr	remi del	care l'ubicazione o, in alternativ censimento al Nuovo Catasto T		e è da edificare nel t	erreno in cui s	si riportano		
Via Gu	ıglielm	Marconi, Padenghe (BS)						
Richies	sta perm	esso di costruire			del			
Permesso di costruire/DIA/SCIA/CIL o CIA				_	del			
Variant	te perme	esso di costruire/DIA/SCIA/CIL	o CIA		del			
decreto	o del P enenti a	dell'edificio (o del complesso residente della Repubblica 2 categorie differenti, specificare fici adibiti ad albergo, pensione	6 agosto 19 e le diverse ca	93, n. 412; per e tegorie):				
Numer	o delle u	ınità abitative						
Commi	ittente (i)	SAR s.r.l.					
			Via Corsica	n° 143, 25123 - Br	rescia(BS)			
Progett	tista dell	'isolamento termico						
			Ingegnere	Fornoni Luca				
			Albo: <i>Ingegi</i>	neri Pr.: Brescia N.i	iscr.: A3862			
Progett	tista deg	ıli impianti termici						
			Ingegnere	Fornoni Luca				
			Albo: <i>Ingegi</i>	neri Pr.: Brescia N.i	iscr.: A3862			

2. FATTORI TIPOLOGICI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI)

Gli elementi tipologici forniti, al solo scopo di supportare la presente relazione tecnica, sono i seguenti:

- [X] Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali.
- [] Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare.
- [] Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari.

3. PARAMETRI CLIMATICI DELLA LOCALITÀ

Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93)

2355 GG

Temperatura esterna minima di progetto (secondo UNI 5364 e successivi aggiornamenti)

-6,9 °C

Temperatura massima estiva di progetto dell'aria esterna secondo norma **35,0** °C

4. DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

a) Condizionamento invernale

Descrizione	V [m³]	S [m²]	S/V [1/m]	Su [m²]	θ _{int} [°C]	Ф _{int} [%]
Corpo A	4450,40	2211,89	0,50	969,58	20,0	65,0
Corpo B	3650,11	1777,28	0,49	788,03	20,0	65,0
Edificio ricettivo	8100,50	3989,17	0,49	1757,61	20,0	65,0

Presenza sistema di contabilizzazione del calore:

b) Condizionamento estivo

Descrizione	V [m³]	S [m²]	S/V [1/m]	Su [m²]	θ _{int} [°C]	Φ _{int} [%]
Corpo A	3703,01	1907,58	-	810,49	26,0	50,0
Corpo B	3008,10	1551,57	-	648,21	26,0	50,0
Edificio ricettivo	6711,11	3459,15	-	1458,70	26,0	50,0

Presenza sistema di contabilizzazione del calore:

- V Volume delle parti di edificio abitabili o agibili al lordo delle strutture che li delimitano
- S Superficie esterna che delimita il volume
- S/V Rapporto di forma dell'edificio
- Su Superficie utile dell'edificio
- θ_{int} Valore di progetto della temperatura interna
- φint Valore di progetto dell'umidità relativa interna

c) Informazioni generali e prescrizioni

[]

[]

Presenza di reti di teleriscaldamento/raffreddamento a meno di 1000	m: []
Motivazione della soluzione prescelta:	
Non sono presenti reti di teleriscaldamento in prossimità dell'	edificio
Livello di automazione per il controllo la regolazione e la gestione degli impianti termici (BACS, minimo classe B secondo UNI EN 15232	2)
Livello minimo di automazione per il controllo, la regolazione deconologie dell'edificio e degli impianti termici soddisfatto	e la gestione delle
Adozione di materiali ad elevata riflettanza solare per le coperture:	[]
Valore di riflettanza solare 0,70	>0,65 per coperture piane
Valore di riflettanza solare	>0,30 per coperture a falda
Motivazione che hanno portato al non utilizzo dei materiali riflettenti:	
Adozione di tecnologie di climatizzazione passiva per le coperture:	[x]
Motivazione che hanno portato al non utilizzo:	
Il pacchetto di copertura presenta ottime caratteristiche term	
ritenuto necessario inserire tecnologie di climatizzazione pass	пуа дена сорегтига
Adozione di misuratori di energia (Energy Meter):	[X]
Descrizione delle principali caratteristiche:	
Termostati locali	
Adozione di sistemi di contabilizzazione diretta del calore, del freddo	e dell'ACS: []
Descrizione dei sistemi utilizzati o motivazioni che hanno portato al n	on utilizzo:
I sistemi di contabilizzazione diretta dell'energia non sono nei immobiliare termoautonoma	cessari in quanto unità
Utilizzazione di fonti di energia rinnovabili per la copertura dei cons	
per il raffrescamento secondo i principi minimi di integrazione, le mall'allegato 3, del decreto legislativo 8 novembre 2021, n. 199.	odalità e le decorrenze di cui
Descrizione e percentuali di copertura:	
Utilizzo di pompe di calore per il riscaldamento, il raffrescame produzione di ACS.	nto degli ambienti e per la
Utilizzo di pannelli fotovoltaici per la produzione di energia ele	ettrica.
Copertura complessiva dei consumi da fonti rinnovabili > 60%	
Copertura complessiva dei consumi per produzione ACS da for	nti rinnovabili > 60%
Adozione sistemi di regolazione automatica della temperatura am locali o nelle zone termiche servite da impianti di climatizzazione inve	
Adozione sistemi di compensazione climatica nella regolazione au temperatura ambiente singoli locali o nelle zone termiche servite climatizzazione invernale:	
Motivazioni che hanno portato al non utilizzo:	

Valutazione sull'efficacia dei sistemi schermanti delle superfici vetrate sia esterni che interni presenti:

I vetri che compongono i componenti trasparenti sono di tipo basso emissivo. I serramenti sono dotati di oscuranti in modo che il valore del fattore di trasmissione solare totale g gl+sh sia non superiore a 0,3, in ottemperanza a quanto previsto nella tabella 16 dell'allegato B del decreto 6480 del 30.7.2015 e successivi aggiornamenti.

Descrizione e potenza degli impianti alimentati da fonti rinnovabili (specificare anche le caratteristiche e l'ubicazione (comune, indirizzo, foglio e particella catastale) di eventuali impianti per cui ci si avvale della possibilità prevista al punto 2 della DGR 2480 del 18.11.2019), allegando l'atto di assenso del legittimo proprietario o dell'avente titolo:

5. DATI RELATIVI AGLI IMPIANTI

5.1 Impianti termici

b)

Marca - modello Tipo sorgente fredda

Impianto tecnologico destinato ai servizi di climatizzazione invernale e/o estiva e/o produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato.

a)

Descrizione impianto						
Tipologia						
Impianto autonomo per il riscaldamento produzione di ACS.	e il raffrescamento degli an	nbienti, per la				
Sistemi di generazione						
Sistema VRF con recupero di calore						
Sistemi di termoregolazione						
Termoregolazione di una singola unità im	ımobiliare pilotato dalla ten	nperatura rilevata in				
ogni ambiente abbinata a centralina clima rilevata da sonda posizionata sulla murat solari diretti.	atica compensata sulla tem	peratura esterna				
Sistemi di contabilizzazione dell'energia termi	са					
Non necessari in quanto unità immobiliar	re termoautonoma					
Sistemi di distribuzione del vettore termico						
Distribuzione ad anello con tubazioni in r	ame per la distribuzione de	l gas refrigerante				
Sistemi di ventilazione forzata: tipologie						
Nessun sistema adottato						
Sistemi di accumulo termico: tipologie						
Nessun accumulo termico per la climatizz produzione di ACS	zazione degli ambienti, accu	mulo termico per la				
Sistemi di produzione e di distribuzione dell'ad	cqua calda sanitaria					
Produzione dedicata mediante sistema di mediante serpentino in accumulo di acqu	i n°4 pompe di calore. Produ					
	/	536				
Trattamento di condizionamento chimico per I	'acqua, norma UNI 8065:	[X]				
Presenza di un filtro di sicurezza:		[X]				
Specifiche dei generatori di energia						
Installazione di un contatore del volume di acc	qua calda sanitaria:	[]				
Installazione di un contatore del volume di acc	qua di reintegro dell'impianto:	[]				
Zona <i>Edificio ricettivo</i>	Quantità	1				
Servizio Acqua calda sanitaria	Fluido termovettore	Acqua Sectories				
ipo di generatore <i>Pompa di calore</i> Combustibile <i>Energia elettrica</i>						

DAIKIN/ALTHERMA 3 M/EBLA16D

Aria esterna

ione (COP)		15,6 4,38	kW -		
7,0	°C	Sorgente calda		35,0	°C
ettivo		Quantità		1	
la sanitaria		Fluido termo	vettore	Acqua	
Pompa di calore		Combustibile	е	Energia	a elettrica
DAIKIN/ALTH	ERMA 3	M/EBLA16D			
Aria esterna					
n riscaldamento		15,6	kW		
ione (COP)		4,38	_		
nento:			_		
7,0	°C	Sorgente calda		35,0	°C
ettivo		Ouantità		1	
			vettore	-	
					a elettrica
	ERMA 3	M/EBLA16D			
Aria esterna					
n riscaldamento		15.6	kW		
			- "		
		.,,,,,	_		
	°C	Sorgente calda		35,0	°C
	=	-	_		
acttivo		Quantità			
			wettore		
					a elettrica
	ERMA 3		_	Lifergie	refettifea
Aria esterna		.,			
n riccaldamente		15.6	L/\/		
n riscaldamento		15,6	kW		
ione (COP)		15,6 4,38	_ kW -		
ione (COP) nento:	°C	4,38	_	35.0	°C
ione (COP)	°C		_	35,0	°C
ione (COP) nento:	°C	4,38 Sorgente calda	_		°C
ione (COP) nento: 7,0	°C	4,38 Sorgente calda Quantità	- - <u>-</u>	_1	°C
ione (COP) nento: 7,0 ento	°C	4,38 Sorgente calda Quantità Fluido termo	- - - - - -	1 Aria	
ione (COP) nento: 7,0 ento Pompa di calore		4,38 Sorgente calda Quantità Fluido termo Combustibile	- - - - - -	1 Aria	°C
ento DAIKIN/VRV I		4,38 Sorgente calda Quantità Fluido termo Combustibile	- - - - - -	1 Aria	
ione (COP) nento: 7,0 ento Pompa di calore		4,38 Sorgente calda Quantità Fluido termo Combustibile	- - - - - -	1 Aria	
ento DAIKIN/VRV I		4,38 Sorgente calda Quantità Fluido termo Combustibile	- - - - - -	1 Aria	
	cettivo da sanitaria Pompa di calore DAIKIN/ALTH Aria esterna in riscaldamento cione (COP) nento: 7,0 cettivo da sanitaria Pompa di calore DAIKIN/ALTH Aria esterna in riscaldamento cione (COP) nento: 7,0 cettivo da sanitaria Pompa di calore DAIKIN/ALTH Aria esterna in riscaldamento cione (COP) nento: 7,0 cettivo da sanitaria Pompa di calore DAIKIN/ALTH	cione (COP) nento: 7,0 °C cettivo da sanitaria Pompa di calore DAIKIN/ALTHERMA 3 Aria esterna in riscaldamento cione (COP) nento: 7,0 °C cettivo da sanitaria Pompa di calore DAIKIN/ALTHERMA 3 Aria esterna in riscaldamento cione (COP) nento: 7,0 °C cettivo da sanitaria Pompa di calore DAIKIN/ALTHERMA 3 Aria esterna in riscaldamento cione (COP) nento: 7,0 °C	inne (COP) A,38 mento: 7,0 Cettivo Quantità Fluido termo Combustibilo DAIKIN/ALTHERMA 3 M/EBLA16D Aria esterna in riscaldamento cettivo Quantità Fluido termo Combustibilo Aria esterna in riscaldamento Combustibilo Cettivo Quantità Fluido termo Combustibilo Cettivo Quantità Fluido termo Combustibilo Aria esterna in riscaldamento in riscaldamento Combustibilo Combustibilo Aria esterna in riscaldamento in riscaldamento cione (COP) Aria esterna in riscaldamento in riscaldamento cione (COP) Aria esterna in riscaldamento in riscaldamento Combustibilo Combustibilo Compa di calore Combustibilo Compa di calore Combustibilo Compa di calore Combustibilo Compa di calore Combustibilo Combustibilo Compa di calore Combustibilo Combustibilo	rione (COP) Pento: 7,0 Cattivo Cata sanitaria Pompa di calore DAIKIN/ALTHERMA 3 M/EBLA16D Aria esterna In riscaldamento Combustibile Combustibile DAIKIN/ALTHERMA 3 M/EBLA16D Aria esterna Compa di calore Combustibile Combustibile Combustibile Combustibile Combustibile DAIKIN/ALTHERMA 3 M/EBLA16D Aria esterna In riscaldamento Combustibile Combustibile DAIKIN/ALTHERMA 3 M/EBLA16D Aria esterna In riscaldamento Combustibile Combustibile DAIKIN/ALTHERMA 3 M/EBLA16D Aria esterna In riscaldamento Combustibile DAIKIN/ALTHERMA 3 M/EBLA16D	rento: 7,0 °C Sorgente calda 35,0 rettivo Quantità I Fluido termovettore Combustibile Energia DAIKIN/ALTHERMA 3 M/EBLA16D Aria esterna In riscaldamento Incione (COP) Inento: 7,0 °C Sorgente calda 35,0 rettivo Quantità I Gla sanitaria Fluido termovettore Combustibile Fluido termovettore Acqua Energia DAIKIN/ALTHERMA 3 M/EBLA16D Aria esterna In riscaldamento I 15,6 I W I Combustibile I 1 I Combustibile I I I I I I I I I I I I I I I I I I I

c)

Sorgente fredda	7,0	°C	Soi	rgente calda	-	20,0	°C
Zono Corne A				Ouantità			
Zona Corpo A				Quantità		1	
Servizio Raffresca				Fluido termo		-	
	Pompa di calore			Combustibile	<u>)</u>	Energi	a elettrica
Marca – modello	DAIKIN/VRV	REYQ26	U				
Tipo sorgente fredda	Aria						
Potenza termica utile	in raffrescamento			73,5	kW		
Indice di efficienza en	ergetica (EER)			3,90	=		
Temperature di riferir					-		
Sorgente fredda	19,0	°C	Soi	rgente calda		35,0	°C
3		=		J	-		
Zona Corpo B				Quantità		1	
Servizio Riscaldan	nento			Fluido termo	vettore	Aria	
Tipo di generatore	Pompa di calore			Combustibile	9	Energi	a elettrica
Marca – modello	DAIKIN/VRV	REYQ24	U	-			
Tipo sorgente fredda	Aria esterna						
Potenza termica utile	in riscaldamente			67.4	kW		
				67,4	- KVV		
Coefficiente di presta:				4,12	=		
Temperature di riferir		0.0					200
Sorgente fredda	7,0	- °C	Soi	rgente calda	_	20,0	°C
Zona Corpo B				Quantità		1	
Servizio Raffresca	mento			Fluido termo	vettore	Aria	
Tipo di generatore	Pompa di calore			- Combustibile)	Energi	a elettrica
Marca – modello	DAIKIN/VRV)U	_			
Tipo sorgente fredda							
Potenza termica utile				55,9	kW		
Indice di efficienza en	ergetica (EER)			4,03	-		
Temperature di riferir	nento:						
Sorgente fredda	19,0	°C	Soi	rgente calda	_	<i>35,0</i>	°C
Per gli impianti termio parte, macchine dive utilizzando le caratte vigenti norme tecnich	rse da quelle sop ristiche fisiche dell	ra descri	itte, i	le prestazioni	di dett	e macchine	e sono fornite
Specifiche relative	_			-		F3 ·	to modify a set of
Tipo di conduzione pr	evista [X] cor	icinua co	n att	enuazione not	ıurna	[] in	itermittente
Altro							_
Tipo di conduzione es	tiva prevista:						
Continua con attent	-	1					

Regolatori climatici delle singole zone o unità immobiliari

Descrizione sintetica delle funzioni	Numero di apparecchi	Numero di livelli di programmazione della temperatura nelle 24 ore
Regolazione climatica su PDC	·	>2

Dispositivi per la regolazione automatica della temperatura ambiente nei singoli locali o nelle singole zone, ciascuna avente caratteristiche di uso ed esposizioni uniformi.

Descrizione sintetica dei dispositivi	Numero di apparecchi
Termostati locali	66

e) Terminali di erogazione dell'energia termica

Tipo di terminali	Numero di apparecchi	Potenza termica nominale [W]
Unità interne canalizzate VRF	59	205500

g)	Sistemi di trattamento	dell'acqua	(tino o	li trattamento
y,	Sisteiiii ui tiattaillelltu	uen acqua	(upo u	ii liallaiiiEiilU

Addolcimento chimico/fisico dell'acqua di reintegro dell'impianto

j) Schemi funzionali degli impianti termici

Vedasi allegato impianti termici

5.2 Impianti fotovoltaici

Descrizione e caratteristiche tecniche

Impianto fotovoltaico da 55,0kWp installato su copertura piana.

Sch		:	c	:		I
\sim cr	ıρm	ш	TIII	กรเ	Λn	าลเ

5.4 Impianti di illuminazione

Descrizione e caratteristiche tecniche

Sistemi di illuminazione a basso consumo energetico

\sim	- 1-				nzi			
_	cп	മന	าเ	TII	ทรเ	Λr	าลเ	ш

5.5 Altri impianti

Descrizione e caratteristiche tecniche di apparecchiature, sistemi e impianti di rilevante importanza funzionale

Impianto in pompa di calore ad alta efficienza

Livello minimo di efficienza dei motori elettrici per ascensori e scale mobili

6. PRINCIPALI RISULTATI DEI CALCOLI

a) Involucro edilizio e ricambi d'aria

Numero di ricambi d'aria (media nelle 24 ore) - specificare per le diverse zone

N.	Descrizione	Valore di progetto [vol/h]	Valore medio 24 ore [vol/h]
1	Corpo A	2,04	0,67
2	Corpo B	2,17	0,53

Nome verifica: Verifica

Edificio: Edificio ricettivo

- Si dichiara che l'edificio oggetto della presente relazione può essere definito "edificio ad energia quasi zero" in quanto sono contemporaneamente rispettati:
 - Tutti i requisiti previsti dalla lettera b), del punto 6.13 dell'allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015
 - Gli obblighi di integrazione delle fonti rinnovabili previsti dalla lettera c) del punto 6.13 dell'allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015

a) Involucro edilizio e ricambi d'aria

Caratteristiche termiche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Trasmittanza U [W/m²K]	Trasmittanza media [W/m²K]
M1	Muratura perimetrale 1	0,148	0,290
M6	Muratura su ct	0,147	0,184
P1	Pavimento su terreno 1	0,135	0,137
P2	Pavimento su terreno 2	0,136	0,138
P4	Solaio interpiano su esterno	0,236	0,409
S2	Solaio interpiano terrazza	0,243	0,368
<i>S3</i>	Copertura	0,146	0,130

Caratteristiche termiche dei divisori opachi e delle strutture dei locali non climatizzati

Cod.	Descrizione	Trasmittanza media [W/m²K]	Valore limite [W/m²K]	Verifica
M4	Muro interno 1	0,301	0,800	Positiva
M5	Muro interno 2	0,305	0,800	Positiva
P3	Solaio interpiano	0,489	0,800	Positiva
S1	Solaio interpiano	0,511	0,800	Positiva

Caratteristiche igrometriche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Condensa superficiale	Condensa interstiziale
M1	Muratura perimetrale 1	Positiva	Positiva
M4	Muro interno 1	Positiva	Positiva
M5	Muro interno 2	Positiva	Positiva
M6	Muratura su ct	Positiva	Positiva
M7	Cassonetto	Positiva	Positiva
М9	Porta ingresso p1	Positiva	Positiva
P1	Pavimento su terreno 1	Positiva	Positiva
P2	Pavimento su terreno 2	Positiva	Positiva

P3	Solaio interpiano	Positiva	Positiva
P4	Solaio interpiano su esterno	Positiva	Positiva
S1	Solaio interpiano	Positiva	Positiva
S2	Solaio interpiano terrazza	Positiva	Positiva
<i>S</i> 3	Copertura	Positiva	Positiva

Caratteristiche igrometriche dei ponti termici

Cod.	Descrizione	Verifica temperatura critica
Z1	W - Parete - Telaio	Positiva
Z2	GF - Parete - Solaio controterra	Positiva
Z4	B - Parete - Balcone	Positiva
Z5	R - Parete - Copertura	Positiva
Z8	P - Parete - Pilastro	Positiva

Caratteristiche di massa superficiale Ms e trasmittanza periodica YIE dei componenti opachi

Cod.	Descrizione	Ms [kg/m²]	YIE [W/m²K]
M1	Muratura perimetrale 1	234	0,002
M7	Cassonetto	1	0,532
P4	Solaio interpiano su esterno	450	0,012
S2	Solaio interpiano terrazza	439	0,019
<i>S3</i>	Copertura	410	0,010

Caratteristiche termiche dei componenti finestrati

Cod.	Descrizione	Trasmittanza infisso Uw [W/m²K]	Trasmittanza vetro U _g [W/m²K]
M7	Cassonetto	0,536	-
М8	Porta ingresso	1,313	-
W1	40*176	1,195	1,000
W10	120*250	1,195	1,000
W11	546*250	1,195	1,000
W12	210*240	1,195	1,000
W13	180*80	1,195	1,000
W14	180*250	1,195	1,000
W15	120*250	1,195	1,000
W16	120*270	1,195	1,000
W17	300*270	1,195	1,000
W18	70*180	1,195	1,000
W2	583*270	1,195	1,000
W3	250*560	1,195	1,000
W4	300*560	1,195	1,000
W5	413*270	1,195	1,000
W6	180*270	1,195	1,000
W7	200*270	1,195	1,000
W8	250*270	1,195	1,000
W9	50*220	1,195	1,000

b) Indici di prestazione energetica per la climatizzazione invernale ed estiva, per la produzione di acqua calda sanitaria, per la ventilazione e l'illuminazione

Determinazione dei seguenti indici di prestazione energetica, espressi in kWh/m² anno, così come definite al punto 6 dell'Allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015, rendimenti e parametri che ne caratterizzano l'efficienza energetica:

Metodo di calcolo utilizzato (indicazione obbligatoria)

UNI/TS 11300 e norme correlate

Coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente (UNI EN ISO 13789)

Corpo A		
Superficie disperdente S	2211,89	m ²
Valore di progetto H'⊤	0,31	W/m²K
Valore limite (Tabella 10, allegato B) H' _{T,L}	0,55	W/m²K
Verifica (positiva / negativa)	Positiva	
<u>Corpo B</u>		•
Superficie disperdente S	1777,28	m ²
Valore di progetto H' _T	0,29	W/m ² K
Valore limite (Tabella 10, allegato B) H' _{T,L}	0,55	W/m²K
Verifica (positiva / negativa)	Positiva	. ′
Area solare equivalente estiva per unità di superficie	utilo	•
	utile	
Corpo A		
Superficie utile A _{sup utile}	969,58	m ²
Valore di progetto A _{sol,est} /A _{sup utile}	0,027	
Valore limite (Tabella 11, appendice A) (A _{sol,est} /A _{sup} utile)limite	0,040	
Verifica (positiva / negativa)	Positiva	•
Corpo B		
Superficie utile A _{sup utile}	788,03	m^2
Valore di progetto A _{sol,est} /A _{sup utile}	0,020	•
Valore limite (Tabella 11, appendice A) (A _{sol,est} /A _{sup}	0,040	
Verifica (positiva / negativa)	Positiva	
Indice di prestazione termica utile per la climatizzazi	one invernale d	ell'edificio
Valore di progetto EP _{H,nd}	<i>37,06</i>	kWh/m²
Valore limite EP _{H,nd,limite}	42,03	kWh/m²
Verifica (positiva / negativa)	Positiva	
Indice di prestazione termica utile per la climatizzazi	one estiva dell'e	
Valore di progetto EP _{C,nd}	19,69	kWh/m ²
Valore limite EP _{C,nd,limite}	25,31	kWh/m ²
Verifica (positiva / negativa)	Positiva	
Indice della prestazione energetica globale dell'edific	io (Energia prin	naria)
Prestazione energetica per riscaldamento EP _H	56,14	kWh/m²
Prestazione energetica per acqua sanitaria EP _W	52,68	kWh/m²
Prestazione energetica per raffrescamento EP _C	3,58	kWh/m ²
Prestazione energetica per ventilazione EP _V	0,00	kWh/m ²
Prestazione energetica per illuminazione EP _L	39,58	kWh/m ²

Prestazione energetica per servizi EP _T	0,00	kWh/m²
Valore di progetto EP _{gl,tot}	151,98	kWh/m²
Valore limite EP _{gl,tot,limite}	200,96	kWh/m²
Verifica (positiva / negativa)	Positiva	

Indice della prestazione energetica globale dell'edificio (Energia primaria non rinnovabile)

Valore di progetto EP_{gl,nr} 52,28 kWh/m²

b.1) Efficienze medie stagionali degli impianti

Descrizione	Servizi	ղ _ց [%]	η _{ց,amm} [%]	Verifica
Corpo A	Riscaldamento	61,3	60,1	Positiva
Corpo B	Riscaldamento	<i>63,5</i>	60,2	Positiva
Centralizzato	Acqua calda sanitaria	72,4	54,6	Positiva
Corpo A	Raffrescamento	483,8	139,3	Positiva
Corpo B	Raffrescamento	436,0	139,2	Positiva

c) Impianti fonti rinnovabili per la produzione di acqua calda sanitaria

Percentuale di copertura del fabbisogno annuo	78,69	%
Percentuale minima di copertura prevista	60,00	%
Verifica (positiva / negativa)	Positiva	
(verifica secondo D.Lgs. 8 novembre 2021, n.199 - Allegato 3)		

d) Impianti fotovoltaici

Percentuale di copertura del fabbisogno annuo	<i>54,5</i>	%
Fabbisogno di energia elettrica da rete	47120	kWh _e
Energia elettrica da produzione locale	60528	kWh _e
Potenza elettrica installata	<i>55,00</i>	kW
Potenza elettrica richiesta	54,44	kW
Verifica (positiva / negativa)	Positiva	

Consuntivo energia

Energia consegnata o fornita (E _{del})	53990	kWh
Energia rinnovabile (E _{gl,ren})	99,70	kWh/m²
Energia esportata (E _{exp})	4182	kWh
Fabbisogno annuo globale di energia primaria (Egl,tot)	151,98	kWh/m²
Energia rinnovabile in situ (elettrica)	60528	$kWh_{e} \\$
Energia rinnovabile in situ (termica)	0	kWh

e) Copertura da fonti rinnovabili

Percentuale da fonte rinnovabile	69,7	%
Percentuale minima di copertura prevista	60,0	%

Verifica	(positiva /	negativa)	
verillica	i DOSILIVA 7	Hedativa	

Positiva

f) Valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi ad alta efficienza

L'edificio è dotato di sistemi ad alta efficienza

7. ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

Nei casi in cui la normativa vigente consente di derogare ad obblighi generalmente validi, in questa sezione vanno adeguatamente illustrati i motivi che giustificano la deroga nel caso specifico.

Nessuna deroga prevista

8. DOCUMENTAZIONE ALLEGATA

[X]	Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi. N. 1 Rif.: Vedasi allegati architettonici
[]	Prospetti e sezioni degli edifici con evidenziazione dei sistemi fissi di protezione solare e definizione degli elementi costruttivi. N. Rif.:
[]	Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari. N Rif.:
[]	Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo "Dati relativi agli impianti". N Rif.:
[X]	Tabelle con indicazione delle caratteristiche termiche, termoigrometriche e della massa efficace dei componenti opachi dell'involucro edilizio con verifica dell'assenza di rischio di formazione di muffe e di condensazioni interstiziali. N. 16 Rif.: Vedasi tabelle allegate dei componenti opachi
[X]	Tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio e della loro permeabilità all'aria. N. 18 Rif.: Vedasi tabelle allegate dei componenti finestrati
[]	Tabelle indicanti i provvedimenti ed i calcoli per l'attenuazione dei ponti termici. N Rif.:
[]	Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi alternativi ad alta efficienza. N. Rif.:
[]	Altri allegati. N. Rif.:
I cal	Altri allegati.
I cal	Altri allegati. N. Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente
I cal di co	Altri allegati. N. Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti:
I cale di co [X]	Altri allegati. N. Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali.
I cale di co [X] [X]	Altri allegati. N. Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1.
I caldi co [X] [X] [X]	Altri allegati. N. Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{C,nd} secondo UNI/TS 11300-1.
I cald di co [X] [X] [X] [X]	Altri allegati. N. Rif.: Coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{c,nd} secondo UNI/TS 11300-1. Calcolo dei coefficienti di dispersione termica H _T - H _U - H _G - H _A - H _V . Calcolo mensile delle perdite (Q _{h,ht}), degli apporti solari (Q _{sol}) e degli apporti interni (Q _{int}) secondo UNI/TS
I cald di co	Altri allegati. N. Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{c,nd} secondo UNI/TS 11300-1. Calcolo dei coefficienti di dispersione termica H _T - H _U - H _G - H _A - H _V . Calcolo mensile delle perdite (Q _{h,ht}), degli apporti solari (Q _{sol}) e degli apporti interni (Q _{int}) secondo UNI/TS 11300-1.
I caldi co [X] [X] [X] [X] [X] [X]	Altri allegati. N. Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{C,nd} secondo UNI/TS 11300-1. Calcolo dei coefficienti di dispersione termica H _T - H _U - H _G - H _A - H _V . Calcolo mensile delle perdite (Q _{h,ht}), degli apporti solari (Q _{sol}) e degli apporti interni (Q _{int}) secondo UNI/TS 11300-1. Calcolo degli scambi termici ordinati per componente.
I cald di co [X] [X] [X] [X] [X] [X] [X] [X]	Altri allegati. N. Rif.: Coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{c,nd} secondo UNI/TS 11300-1. Calcolo dei coefficienti di dispersione termica H _T - H _U - H _G - H _A - H _V . Calcolo mensile delle perdite (Q _{h,ht}), degli apporti solari (Q _{sol}) e degli apporti interni (Q _{int}) secondo UNI/TS 11300-1. Calcolo degli scambi termici ordinati per componente. Calcolo del fabbisogno di energia primaria rinnovabile, non rinnovabile e totale secondo UNI/TS 11300-5. Calcolo del fabbisogno di energia primaria per la climatizzazione invernale secondo UNI/TS 11300-2 e UNI/TS
I cald di co [X]	Altri allegati. N. Rif.: Coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{c,nd} secondo UNI/TS 11300-1. Calcolo dei coefficienti di dispersione termica H _T - H _U - H _G - H _A - H _V . Calcolo mensile delle perdite (Q _{h,ht}), degli apporti solari (Q _{sol}) e degli apporti interni (Q _{int}) secondo UNI/TS 11300-1. Calcolo degli scambi termici ordinati per componente. Calcolo del fabbisogno di energia primaria rinnovabile, non rinnovabile e totale secondo UNI/TS 11300-5. Calcolo del fabbisogno di energia primaria per la climatizzazione invernale secondo UNI/TS 11300-2 e UNI/TS 11300-4. Calcolo del fabbisogno di energia primaria per la produzione di acqua calda sanitaria secondo UNI/TS 11300-2
I cald di co [X]	Altri allegati. N. Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{C,nd} secondo UNI/TS 11300-1. Calcolo dei coefficienti di dispersione termica H _T - H _U - H _G - H _A - H _V . Calcolo mensile delle perdite (Q _{h,ht}), degli apporti solari (Q _{sol}) e degli apporti interni (Q _{int}) secondo UNI/TS 11300-1. Calcolo degli scambi termici ordinati per componente. Calcolo del fabbisogno di energia primaria rinnovabile, non rinnovabile e totale secondo UNI/TS 11300-5. Calcolo del fabbisogno di energia primaria per la climatizzazione invernale secondo UNI/TS 11300-2 e UNI/TS 11300-4. Calcolo del fabbisogno di energia primaria per la produzione di acqua calda sanitaria secondo UNI/TS 11300-2 e UNI/TS 11300-4.

D. DICHIARAZIONE DI RISPONDENZA										
Il sottoscritto	Ing.	Luca	Fornoni							
	TITOLO	NOME	COGNOME							
iscritto a	Ingegner	i	Brescia	A3862						
	ALBO – ORDI	NE O COLLEGIO DI APPARTENENZA	PROV.	N. ISCRIZIONE						

essendo a conoscenza delle sanzioni previste dall'articolo 27 della legge regionale 11 Dicembre 2006 n. 24 e s.m.i.

DICHIARA

sotto la propria responsabilità che:

- a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute nel decreto attuativo della DGR 3868 del 17.7.2015;
- b) il progetto relativo alle opere di cui sopra rispetta gli obblighi di integrazione delle fonti rinnovabili secondo i principi minimi contenuti nel decreto attuativo della DGR 3868 del 17.7.2015;
- c) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali.

Data, <u>08/05/2025</u>	<u>5 </u>	GNERIDE
		A 3082
		a way you a
		Control of Access of Salar
Il progettista		BRESCIA
	TIMBRO	FIRMA

Relazione tecnica di calcolo prestazione energetica del sistema edificio-impianto

EDIFICIO Edificio ricettivo

INDIRIZZO Via Guglielmo Marconi, Padenghe (BS)

COMMITTENTE SAR s.r.l.

INDIRIZZO Via Corsica nº 143, 25123 - Brescia(BS)

COMUNE Padenghe sul Garda

Rif. **25-011M_1.E0001**

Software di calcolo EDILCLIMA - EC700 versione 13.25.4

FORNONI ING. LUCA
VIA VITTORIO EMANUELE II, 1 - 25039 TRAVAGLIATO (BS)

DATI PROGETTO ED IMPOSTAZIONI DI CALCOLO

Dati generali

Destinazione d'uso prevalente (DPR 412/93) E.1 (3) Edifici adibiti ad albergo, pensione ed

attività similari.

Edificio pubblico o ad uso pubblico **No**Edificio situato in un centro storico **No**

Tipologia di calcolo Calcolo regolamentare (valutazione A1/A2)

Opzioni lavoro

Ponti termici Calcolo analitico

Resistenze liminari Appendice A UNI EN ISO 6946

Serre / locali non climatizzati

Calcolo semplificato

Capacità termica

Calcolo semplificato

Calcolo automatico

Radiazione solare Calcolo con angolo di Azimut

Opzioni di calcolo

Regime normativo **UNI/TS 11300-4 e 5:2016**

Rendimento globale medio stagionale DM 26.06.15 ed UNI/TS 11300 (calcolo 'fisico')

Verifica di condensa interstiziale UNI EN ISO 13788

DATI CLIMATICI DELLA LOCALITÀ

Caratteristiche geografiche

Località Padenghe sul Garda

Provincia **Brescia**

Altitudine s.l.m. 127 m

Latitudine nord 45° 30′ Longitudine est 10° 30′ Gradi giorno DPR 412/93 2355
Zona climatica E

Località di riferimento

per dati invernali **Brescia**per dati estivi **Brescia**

Stazioni di rilevazione

per la temperatura Bargnano
per l'irradiazione Bargnano
per il vento Bargnano

Caratteristiche del vento

Regione di vento:

Direzione prevalente

Est

Distanza dal mare > 40 km
Velocità media del vento 1,3 m/s
Velocità massima del vento 2,6 m/s

Dati invernali

Temperatura esterna di progetto -6,9 °C

Stagione di riscaldamento convenzionale dal **15 ottobre** al **15 aprile**

Dati estivi

Temperatura esterna bulbo asciutto 35,0 °C
Temperatura esterna bulbo umido 25,6 °C
Umidità relativa 48,0 %
Escursione termica giornaliera 15 °C

Temperature esterne medie mensili

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	2.8	3,3	8.4	11.9	17.6	20,9	22.0	21.8	18.2	12.8	7.5	3,3

Irradiazione solare media mensile

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m ²	1,3	2,4	3,8	5,2	8,0	10,4	9,7	7,2	4,4	2,9	1,8	1,2
Nord-Est	MJ/m ²	1,4	3,1	5,4	7,7	10,9	13,5	12,9	10,8	6,9	3,8	2,1	1,3
Est	MJ/m²	2,7	6,0	8,8	10,5	13,5	15,9	15,5	14,5	10,5	6,2	4,1	2,8
Sud-Est	MJ/m ²	4,4	9,1	11,0	11,1	12,5	13,9	13,9	14,4	12,2	8,4	6,8	5,1
Sud	MJ/m ²	5,5	10,9	11,6	10,1	10,3	10,9	11,1	12,2	11,9	9,5	8,4	6,6
Sud-Ovest	MJ/m²	4,4	9,1	11,0	11,1	12,5	13,9	13,9	14,4	12,2	8,4	6,8	5,1
Ovest	MJ/m²	2,7	6,0	8,8	10,5	13,5	15,9	15,5	14,5	10,5	6,2	4,1	2,8
Nord-Ovest	MJ/m ²	1,4	3,1	5,4	7,7	10,9	13,5	12,9	10,8	6,9	3,8	2,1	1,3
Orizz. Diffusa	MJ/m²	2,0	3,3	5,1	6,5	8,2	9,2	9,1	7,7	5,7	4,2	2,6	1,8
Orizz. Diretta	MJ/m²	1,4	4,4	6,9	8,8	12,2	15,4	14,7	13,6	9,0	4,2	2,6	1,6

Irradianza sul piano orizzontale nel mese di massima insolazione: 285 W/m²

ELENCO COMPONENTI

<u>Muri:</u>

Cod	Tipo	Descrizione	Sp [mm]	Ms [kg/m²]	Y _{IE} [W/m²K]	Sfasamento [h]	C _T [kJ/m²K]	ε [-]	a [-]	θ	Ue [W/m²K]
M1	T	Muratura perimetrale 1	510,0	234	0,002	-20,272	22,376	0,90	0,60	-6,9	0,148
M2	T	Pilastro	510,0	611	0,002	-14,176	21,778	0,90	0,60	-6,9	0,198
M3	D	Muro reception	497,5	10	0,119	-6,727	25,756	0,90	0,60	-	0,205
M4	N	Muro interno 1	452,5	7	0,177	-5,648	25,526	0,90	0,60	20,0	0,268
M5	N	Muro interno 2	612,5	7	0,177	-5,648	25,526	0,90	0,60	20,0	0,268
M6	U	Muratura su ct	510,0	234	0,002	-20,470	22,377	0,90	0,60	6,6	0,147
M7	T	Cassonetto	62,5	1	0,532	-0,582	10,926	0,00	0,00	-6,9	0,536
M8	T	Porta ingresso	60,0	27	1,290	-1,012	11,965	0,90	0,60	-6,9	1,313
M9	N	Porta ingresso p1	60,0	27	1,195	-1,135	12,828	0,90	0,60	20,0	1,222

Pavimenti:

Cod	Tipo	Descrizione	Sp [mm]	Ms [kg/m²]	Y _{IE} [W/m²K]	Sfasamento [h]	Ст [kJ/m²K]	ε [-]	a [-]	[°C]	Ue [W/m²K]
P1	G	Pavimento su terreno 1	782,0	512	0,014	-17,431	57,152	0,90	0,60	-6,9	0,135
P2	G	Pavimento su terreno 2	782,0	512	0,014	-17,431	57,152	0,90	0,60	-6,9	0,136
P3	N	Solaio interpiano	542,5	476	0,019	-15,810	57,855	0,90	0,60	18,7	0,413
P4	T	Solaio interpiano su esterno	542,5	450	0,012	-14,611	59,141	0,90	0,60	-6,9	0,236

Soffitti:

Cod	Tipo	Descrizione	Sp [mm]	Ms [kg/m²]	Y _{IE} [W/m²K]	Sfasamento [h]	C _T [kJ/m²K]	ε [-]	a [-]	θ [°C]	Ue [W/m²K]
<i>S</i> 1	N	Solaio interpiano	542,5	476	0,033	-14,715	35,168	0,90	0,60	18,7	0,450
<i>S</i> 2	T	Solaio interpiano terrazza	536,5	439	0,019	-13,045	35,181	0,90	0,60	-6,9	0,243
<i>S3</i>	T	Copertura	611,5	410	0,010	-14,703	35,013	0,90	0,60	-6,9	0,146

Legenda simboli

Sp Spessore struttura

Ms Massa superficiale della struttura senza intonaci

FORNONI ING. LUCA VIA VITTORIO EMANUELE II, 1 - 25039 TRAVAGLIATO (BS)

Y_{IE} Trasmittanza termica periodica della struttura

Sfasamento dell'onda termica

C_T Capacità termica areica

ε Emissività

a Fattore di assorbimento

θ Temperatura esterna o temperatura locale adiacente

Ue Trasmittanza di energia della struttura

Ponti termici:

Cod	Descrizione	Assenza di rischio formazione muffe	Ψ [W/mK]
<i>Z</i> 1	W - Parete - Telaio	X	0,112
<i>Z</i> 2	GF - Parete - Solaio controterra	X	0,004
<i>Z</i> 3	IF - Parete - Solaio interpiano	X	0,007
<i>Z</i> 4	B - Parete - Balcone	X	0,134
<i>Z</i> 5	R - Parete - Copertura	X	-0,028
<i>Z</i> 6	C - Angolo tra pareti sporgente	X	-0,046
<i>Z7</i>	C - Angolo tra pareti rientrante	X	0,013
<i>Z8</i>	P - Parete - Pilastro	X	0,102

Legenda simboli

Ψ Trasmittanza lineica di calcolo

Componenti finestrati:

Cod	Tipo	Descrizione	vetro	е	ggl,n	fc inv	fc est	g tot [-]	H [cm]	L [cm]	Ug [W/m²K]	Uw [W/m²K]	и [°C]	Agf [m²]	Lgf [m]
W1	T	40*176	Doppio	0,250	0,420	0,55	0,55	-	176,0	40,0	1,000	1,300	-6,9	0,384	3,680
W2	T	583*270	Doppio	0,250	0,420	0,55	0,55	-	270,0	583,0	1,000	1,300	-6,9	13,640	31,060
W3	T	250*560	Doppio	0,250	0,420	0,55	0,55	-	560,0	250,0	1,000	1,300	-6,9	12,730	15,560
W4	T	300*560	Doppio	0,250	0,420	0,55	0,55	-	560,0	300,0	1,000	1,300	-6,9	15,450	16,560
W5	T	413*270	Doppio	0,250	0,420	0,55	0,55	-	270,0	413,0	1,000	1,300	-6,9	9,830	17,900
W6	T	180*270	Doppio	0,250	0,420	0,55	0,55	-	270,0	180,0	1,000	1,300	-6,9	3,912	13,240
W7	T	200*270	Doppio	0,250	0,420	0,55	0,55	-	270,0	200,0	1,000	1,300	-6,9	4,420	13,640
W8	T	250*270	Doppio	0,250	0,420	0,55	0,55	-	270,0	250,0	1,000	1,300	-6,9	5,690	14,640
W9	T	50*220	Doppio	0,250	0,420	0,55	0,55	-	220,0	50,0	1,000	1,300	-6,9	0,694	4,760
W10	T	120*250	Doppio	0,250	0,420	0,55	0,55	-	250,0	120,0	1,000	1,300	-6,9	2,200	11,240
W11	T	546*250	Doppio	0,250	0,420	0,55	0,55	-	250,0	546,0	1,000	1,300	-6,9	12,168	19,760
W12	T	210*240	Doppio	0,250	0,420	0,55	0,55	-	240,0	210,0	1,000	1,300	-6,9	4,122	12,640
W13	T	180*80	Doppio	0,250	0,420	0,55	0,55	-	80,0	180,0	1,000	1,300	-6,9	0,986	5,640
W14	T	180*250	Doppio	0,250	0,420	0,55	0,55	-	250,0	180,0	1,000	1,300	-6,9	3,604	12,440
W15	T	120*250	Doppio	0,250	0,420	0,55	0,55	-	250,0	120,0	1,000	1,300	-6,9	2,200	11,240
W16	T	120*270	Doppio	0,250	0,420	0,55	0,55	-	270,0	120,0	1,000	1,300	-6,9	2,388	12,040
W17	T	300*270	Doppio	0,250	0,420	0,55	0,55	-	270,0	300,0	1,000	1,300	-6,9	6,960	15,640
W18	T	70*180	Doppio	0,250	0,420	0,55	0,55	-	180,0	70,0	1,000	1,300	-6,9	0,886	4,360

Legenda simboli

e Emissività

ggl,n Fattore di trasmittanza solare

 $\begin{array}{ll} \text{fc inv} & \text{Fattore tendaggi (energia invernale)} \\ \text{fc est} & \text{Fattore tendaggi (energia estiva)} \\ g_{tot} & \text{Fattore di trasmissione solare totale} \\ \end{array}$

H Altezza
L Larghezza

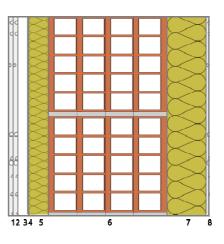
Ug Trasmittanza vetro

Uw Trasmittanza serramento

Temperatura esterna o temperatura locale adiacente

Agf Area del vetro

Lgf


Perimetro del vetro

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

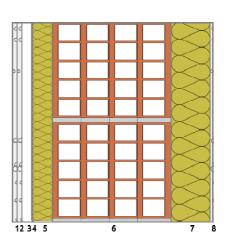
secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Muratura perimetrale 1

Trasmittanza termica	0,148	W/m ² K
Spessore	510	mm
Temperatura esterna (calcolo potenza invernale)	-6,9	°C
Permeanza	0,662	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	269	kg/m²
Massa superficiale (senza intonaci)	234	kg/m²
Trasmittanza periodica	0,002	W/m²K
Fattore attenuazione	0,012	-
Sfasamento onda termica	-20,3	h

Codice: M1

Stratigrafia:


N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130			-
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	25,00	0,1389	0,180			-
4	Barriera vapore foglio di alluminio (.02505 mm)	0,03	220,000 0	0,000	2700	0,88	9999999
5	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
6	Poroton Danesi P700 30.19.25 inc. 30	300,00	0,1550	1,935	744	1,00	5
7	Pannello in lana di roccia	100,00	0,0350	2,857	70	1,03	1
8	Intonaco plastico per cappotto	10,00	0,3000	0,033	1300	0,84	30
-	Resistenza superficiale esterna	_	-	0,073	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI EN 12831 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Muratura perimetrale 1

Trasmittanza termica	0,149	W/m ² K
Spessore	510	mm
Temperatura esterna (calcolo potenza invernale)	-6,9	°C
Permeanza	0,662	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	269	kg/m²
Massa superficiale (senza intonaci)	234	kg/m²
Trasmittanza periodica	0,002	W/m ² K
Fattore attenuazione	0,012	-
Sfasamento onda termica	-20,3	h

Codice: M1

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	25,00	0,1389	0,180		-	-
4	Barriera vapore foglio di alluminio (.02505 mm)	0,03	220,000 0	0,000	2700	0,88	9999999
5	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
6	Poroton Danesi P700 30.19.25 inc. 30	300,00	0,1550	1,935	744	1,00	5
7	Pannello in lana di roccia	100,00	0,0350	2,857	70	1,03	1
8	Intonaco plastico per cappotto	10,00	0,3000	0,033	1300	0,84	30
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>Muratura perimetrale 1</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

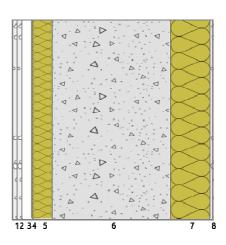
Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

Verifica criticità di condensa superficiale

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)


Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

Codice: M1

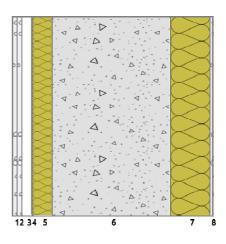
CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Pilastro

Trasmittanza termica 0,198 W/m²K	
Spessore 510 mm	
Temperatura esterna (calcolo potenza invernale) -6,9 °C	
Permeanza 0,607 10 ⁻¹² kg/sm	² Pa
Massa superficiale (con intonaci) 646 kg/m²	
Massa superficiale (senza intonaci) 611 kg/m²	
Trasmittanza periodica 0,002 W/m²K	
Fattore attenuazione 0,012 -	
Sfasamento onda termica -14,2 h	

Codice: M2

Stratigrafia:


N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	25,00	0,1389	0,180	-	-	-
4	Barriera vapore foglio di alluminio (.02505 mm)	0,03	220,000 0	0,000	2700	0,88	9999999
5	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
6	C.l.s. di sabbia e ghiaia (pareti esterne)	300,00	1,2600	0,238	2000	1,00	96
7	Pannello in lana di roccia	100,00	0,0350	2,857	70	1,03	1
8	Intonaco plastico per cappotto	10,00	0,3000	0,033	1300	0,84	30
-	Resistenza superficiale esterna	_	_	0,073	_	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	=

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI EN 12831 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Pilastro

Trasmittanza termica	0,200	W/m ² K
Spessore	510	mm
Temperatura esterna (calcolo potenza invernale)	-6,9	°C
Permeanza	0,607	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	646	kg/m²
Massa superficiale (senza intonaci)	611	kg/m²
Trasmittanza periodica	0,002	W/m²K
Fattore attenuazione	0,012	-
Sfasamento onda termica	-14,2	h

Codice: M2

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	25,00	0,1389	0,180		-	-
4	Barriera vapore foglio di alluminio (.02505 mm)	0,03	220,000 0	0,000	2700	0,88	9999999
5	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
6	C.l.s. di sabbia e ghiaia (pareti esterne)	300,00	1,2600	0,238	2000	1,00	96
7	Pannello in lana di roccia	100,00	0,0350	2,857	70	1,03	1
8	Intonaco plastico per cappotto	10,00	0,3000	0,033	1300	0,84	30
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>Pilastro</u>

Codice: <u>M2</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

Verifica criticità di condensa superficiale

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

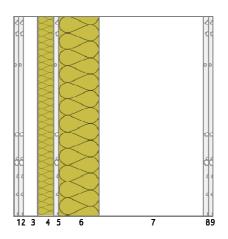
CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Muro reception

Trasmittanza termica **0,205** W/m²K

498 Spessore

10⁻¹²kg/sm²Pa Permeanza


Massa superficiale kg/m² 66 (con intonaci)

Massa superficiale kg/m² **10**

Trasmittanza periodica **0,119** W/m²K

Fattore attenuazione 0,578

Sfasamento onda termica **-6,7** h

Codice: M3

Stratigrafia:

(senza intonaci)

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130	-		
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	35,00	0,1944	0,180	-	-	-
4	Pannello in lana di roccia	40,00	0,0350	1,143	70	1,03	1
5	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
6	Pannello in lana di roccia	100,00	0,0350	2,857	70	1,03	1
7	Intercapedine non ventilata Av<500 mm²/m	260,00	1,4444	0,180	-	-	-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
9	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale esterna	-	-	0,130	-	-	-

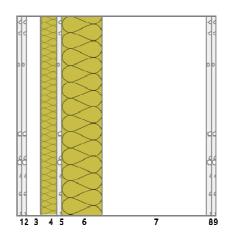
S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI EN 12831 - UNI EN ISO 6946 - UNI EN ISO 13370

<u>Descrizione della struttura:</u> <u>Muro reception</u>

Trasmittanza termica **0,205** W/m²K

Spessore 498 mm


Permeanza 10⁻¹²kg/sm²Pa

Massa superficiale (senza intonaci) 10 kg/m²

Trasmittanza periodica **0,119** W/m²K

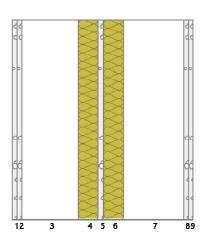
Fattore attenuazione **0,578** -

Sfasamento onda termica -6,7 h

Codice: M3

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	1	1	0,130	1	-	-
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	35,00	0,1944	0,180		-	-
4	Pannello in lana di roccia	40,00	0,0350	1,143	70	1,03	1
5	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
6	Pannello in lana di roccia	100,00	0,0350	2,857	70	1,03	1
7	Intercapedine non ventilata Av<500 mm²/m	260,00	1,4444	0,180	-	-	-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
9	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale esterna	-	1	0,130	1	-	-


S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Muro interno 1

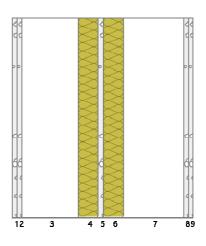
Trasmittanza termica	0,268	W/m ² K
Spessore	453	mm
Temperatura esterna (calcolo potenza invernale)	20,0	°C
Permeanza	268,45 6	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	63	kg/m²
Massa superficiale (senza intonaci)	7	kg/m²
Trasmittanza periodica	0.177	W/m²K
Fattore attenuazione	0,661	-

-5,6 h

Codice: M4

Stratigrafia:

Sfasamento onda termica


N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	1	0,130	1		-
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	140,00	0,7778	0,180			-
4	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
5	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
6	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
7	Intercapedine non ventilata Av<500 mm²/m	150,00	0,8333	0,180	-	-	-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
9	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale esterna	-	-	0,130	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI EN 12831 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Muro interno 1

Trasmittanza termica	0,268	W/m²K
Spessore	453	mm
Temperatura esterna (calcolo potenza invernale)	20,0	°C
Permeanza	268,45 6	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	63	kg/m²
Massa superficiale (senza intonaci)	7	kg/m²
Trasmittanza periodica	0,177	W/m ² K
Fattore attenuazione	0,661	-
Sfasamento onda termica	-5,6	h

Codice: M4

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130			
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	140,00	0,7778	0,180	-	-	-
4	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
5	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
6	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
7	Intercapedine non ventilata Av<500 mm²/m	150,00	0,8333	0,180	-	-	-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
9	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale esterna	-	-	0,130	-	-	-

<u>Legenda simboli</u>

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

Descrizione della struttura: Muro interno 1

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$) **Positiva**

Mese critico ottobre

Fattore di temperatura del mese critico $f_{RSI,max}$ **0,000** Fattore di temperatura del componente f_{RSI} **0,937**

Umidità relativa superficiale accettabile 80 %

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

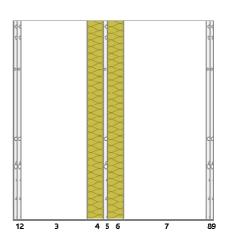
Codice: M4

Descrizione della struttura: Muro interno 2

Trasmittanza termica	0,268	W/m ² K
rasmittanza termica	0,208	VV/[]

Spessore 613 mm

Temperatura esterna (calcolo potenza invernale) 20,0 °C


Permeanza **268,45** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 63 kg/m²

Massa superficiale (senza intonaci) 7 kg/m²

Trasmittanza periodica **0,177** W/m²K

Fattore attenuazione **0,661** - Sfasamento onda termica **-5,6** h

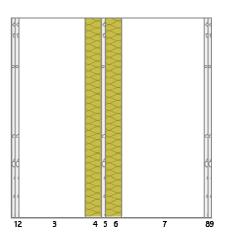
Codice: M5

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130		-	-
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	200,00	1,1111	0,180	-	-	-
4	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
5	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
6	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
7	Intercapedine non ventilata Av<500 mm²/m	250,00	1,3889	0,180	-	-	-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
9	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale esterna	-	-	0,130	1	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Descrizione della struttura: Muro interno 2


Trasmittanza termica	0,268	W/m²K
Spessore	613	mm
Temperatura esterna (calcolo potenza invernale)	20,0	°C
Permeanza	268,45 6	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	63	kg/m²

(senza intonaci) 7 Kg/III

Trasmittanza periodica 0,177 W/m²K

Fattore attenuazione 0,661 -

Sfasamento onda termica -5,6 h

Codice: M5

Stratigrafia:

Massa superficiale

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	1	0,130			-
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	200,00	1,1111	0,180			-
4	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
5	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
6	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
7	Intercapedine non ventilata Av<500 mm²/m	250,00	1,3889	0,180			-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
9	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale esterna	-	-	0,130	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

7 kg/m²

<u>Descrizione della struttura</u>: <u>Muro interno 2</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

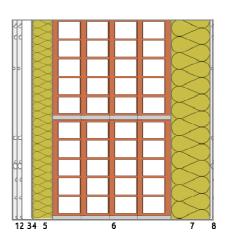
Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$) **Positiva**

Mese critico ottobre

Fattore di temperatura del mese critico $f_{RSI,max}$ **0,000** Fattore di temperatura del componente f_{RSI} **0,937**


Umidità relativa superficiale accettabile 80 %

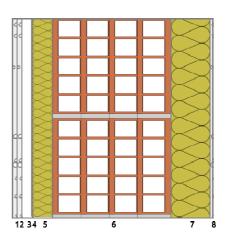
Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

Descrizione della struttura: Muratura su ct

W/m²K
mm
°C
10 ⁻¹² kg/sm ² Pa
kg/m²
kg/m²
W/m ² K
-
h

Codice: M6


Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	1	0,130	-	-	-
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	25,00	0,1389	0,180	-	-	-
4	Barriera vapore foglio di alluminio (.02505 mm)	0,03	220,000 0	0,000	2700	0,88	9999999
5	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
6	Poroton Danesi P700 30.19.25 inc. 30	300,00	0,1550	1,935	744	1,00	5
7	Pannello in lana di roccia	100,00	0,0350	2,857	70	1,03	1
8	Intonaco plastico per cappotto	10,00	0,3000	0,033	1300	0,84	30
-	Resistenza superficiale esterna	-	1	0,130	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	=

Descrizione della struttura: Muratura su ct

Trasmittanza termica	0,147	W/m²K
Spessore	510	mm
Temperatura esterna (calcolo potenza invernale)	6,6	°C
Permeanza	0,662	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	269	kg/m²
Massa superficiale (senza intonaci)	234	kg/m²
Trasmittanza periodica	0,002	W/m ² K
Fattore attenuazione	0,011	-
Sfasamento onda termica	-20,5	h

Codice: M6

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130			•
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
3	Intercapedine non ventilata Av<500 mm²/m	25,00	0,1389	0,180	-	-	-
4	Barriera vapore foglio di alluminio (.02505 mm)	0,03	220,000 0	0,000	2700	0,88	9999999
5	Pannello in lana di roccia	50,00	0,0350	1,429	70	1,03	1
6	Poroton Danesi P700 30.19.25 inc. 30	300,00	0,1550	1,935	744	1,00	5
7	Pannello in lana di roccia	100,00	0,0350	2,857	70	1,03	1
8	Intonaco plastico per cappotto	10,00	0,3000	0,033	1300	0,84	30
-	Resistenza superficiale esterna	-	-	0,130	-		-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura</u>: <u>Muratura su ct</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \le f_{RSI}$)

Positiva

Mese critico $\frac{dicembre}{f_{RSI,max}}$ Fattore di temperatura del mese critico $f_{RSI,max}$ 0,518 Fattore di temperatura del componente f_{RSI} 0,964

Umidità relativa superficiale accettabile 80 %

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

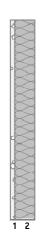
Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

Descrizione della struttura: Cassonetto

Trasmittanza termica **0,536** W/m²K

Spessore 63 mm

Temperatura esterna (calcolo potenza invernale) -6,9 °C


Permeanza **64,000** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 12 kg/m²

Massa superficiale (senza intonaci) **1** kg/m²

Trasmittanza periodica **0,532** W/m²K

Fattore attenuazione **0,993** - Sfasamento onda termica **-0,6** h

Codice: M7

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	•	0,130	-	1	-
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Polistirene espanso sinterizzato (alla grafite)	50,00	0,0310	1,613	20	1,45	60
-	Resistenza superficiale esterna	-	-	0,073	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Descrizione della struttura: Cassonetto

Trasmittanza termica **0,546** W/m²K

Spessore 63 mm

Temperatura esterna (calcolo potenza invernale) -6,9 °C

Permeanza **64,000** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 12 kg/m²

Massa superficiale (senza intenaci) kg/m²

(senza intonaci)

Trasmittanza periodica **0,532** W/m²K

Fattore attenuazione 0,993 Sfasamento onda termica -0,6 h

1 2

Codice: M7

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	1	1	-
1	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
2	Polistirene espanso sinterizzato (alla grafite)	50,00	0,0310	1,613	20	1,45	60
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura</u>: <u>Cassonetto</u> Codice: <u>M7</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)

Positiva

Mese critico

dicembre

Fattore di temperatura del mese critico $f_{RSI,max}$ 0,759Fattore di temperatura del componente f_{RSI} 0,872Umidità relativa superficiale accettabile

80 %

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

Descrizione della struttura: Porta ingresso

Trasmittanza termica 1,3	13	W/m ² K	
Spessore	60	mm	
Temperatura esterna (calcolo potenza invernale)	5, 9	°C	
Permeanza 0,0	10	10 ⁻¹² kg/sm ² Pa	
Massa superficiale (con intonaci)	27	kg/m²	
Massa superficiale (senza intonaci)	27	kg/m²	
Trasmittanza periodica 1,2 Fattore attenuazione 0,9		W/m²K	2 3 457

-1,0 h

Stratigrafia:

Sfasamento onda termica

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130		-	-
1	Legno di abete flusso perpend. alle fibre	5,00	0,1200	0,042	450	1,60	625
2	Acciaio	1,00	52,0000	0,000	7800	0,45	9999999
3	Intercapedine non ventilata Av<500 mm²/m	30,00	0,1667	0,180	-	-	-
4	Pannelli di fibra di legno duri e extraduri	8,00	0,1400	0,057	800	1,70	72
5	Fibre minerali feldspatiche - Pannello semirigido	10,00	0,0420	0,238	40	1,03	1
6	Acciaio	1,00	52,0000	0,000	7800	0,45	9999999
7	Legno di abete flusso perpend. alle fibre	5,00	0,1200	0,042	450	1,60	625
-	Resistenza superficiale esterna	-	-	0,073	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Descrizione della struttura: Porta ingresso

Trasmittanza termica **1,372** W/m²K Spessore 60 mm Temperatura esterna -6,9 °C (calcolo potenza invernale) Permeanza **0,010** 10⁻¹²kg/sm²Pa Massa superficiale **27** kg/m² (con intonaci) Massa superficiale **27** kg/m² (senza intonaci) **1,290** W/m²K Trasmittanza periodica Fattore attenuazione 0,983 2 3 457

-1,0 h

Stratigrafia:

Sfasamento onda termica

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Legno di abete flusso perpend. alle fibre	5,00	0,1200	0,042	450	1,60	625
2	Acciaio	1,00	52,0000	0,000	7800	0,45	9999999
3	Intercapedine non ventilata Av<500 mm²/m	30,00	0,1667	0,180	-	-	-
4	Pannelli di fibra di legno duri e extraduri	8,00	0,1400	0,057	800	1,70	72
5	Fibre minerali feldspatiche - Pannello semirigido	10,00	0,0420	0,238	40	1,03	1
6	Acciaio	1,00	52,0000	0,000	7800	0,45	9999999
7	Legno di abete flusso perpend. alle fibre	5,00	0,1200	0,042	450	1,60	625
-	Resistenza superficiale esterna	_	_	0,040	_	_	_

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	=

Descrizione della struttura: Porta ingresso p1

1,222 W/m²K Trasmittanza termica Spessore 60 mm Temperatura esterna 20,0 °C (calcolo potenza invernale) Permeanza **0,010** 10⁻¹²kg/sm²Pa Massa superficiale kg/m² (con intonaci) Massa superficiale **27** kg/m² (senza intonaci) Trasmittanza periodica **1,195** W/m²K Fattore attenuazione 0,978 2 3 457

-1,1 h

Stratigrafia:

Sfasamento onda termica

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130		-	-
1	Legno di abete flusso perpend. alle fibre	5,00	0,1200	0,042	450	1,60	625
2	Acciaio	1,00	52,0000	0,000	7800	0,45	9999999
3	Intercapedine non ventilata Av<500 mm²/m	30,00	0,1667	0,180		-	•
4	Pannelli di fibra di legno duri e extraduri	8,00	0,1400	0,057	800	1,70	72
5	Fibre minerali feldspatiche - Pannello semirigido	10,00	0,0420	0,238	40	1,03	1
6	Acciaio	1,00	52,0000	0,000	7800	0,45	9999999
7	Legno di abete flusso perpend. alle fibre	5,00	0,1200	0,042	450	1,60	625
-	Resistenza superficiale esterna	_	_	0,130	_	_	-

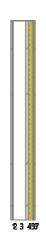
Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R V	Fattore di resistenza alla diffusione del vapore in capo asciutto	_

Descrizione della struttura: Porta ingresso p1

Trasmittanza termica **1,222** W/m²K
Spessore **60** mm

Temperatura esterna (calcolo potenza invernale) 20,0 °C


Permeanza **0,010** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 27 kg/m²

Massa superficiale (senza intonaci) 27 kg/m²

Trasmittanza periodica **1,195** W/m²K

Fattore attenuazione **0,978** - Sfasamento onda termica **-1,1** h

Codice: M9

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Legno di abete flusso perpend. alle fibre	5,00	0,1200	0,042	450	1,60	625
2	Acciaio	1,00	52,0000	0,000	7800	0,45	9999999
3	Intercapedine non ventilata Av<500 mm²/m	30,00	0,1667	0,180	-	-	-
4	Pannelli di fibra di legno duri e extraduri	8,00	0,1400	0,057	800	1,70	72
5	Fibre minerali feldspatiche - Pannello semirigido	10,00	0,0420	0,238	40	1,03	1
6	Acciaio	1,00	52,0000	0,000	7800	0,45	9999999
7	Legno di abete flusso perpend. alle fibre	5,00	0,1200	0,042	450	1,60	625
1	Resistenza superficiale esterna	-	_	0,130	_	_	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R V	Fattore di resistenza alla diffusione del vapore in capo asciutto	_

<u>Descrizione della struttura</u>: <u>Porta ingresso p1</u>

Codice: M9

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

%

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$) **Positiva**

Mese critico ottobre

Fattore di temperatura del mese critico $f_{RSI,max}$ 0,000 Fattore di temperatura del componente f_{RSI} 0,764 Umidità relativa superficiale accettabile

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

Descrizione della struttura: Pavimento su terreno 1

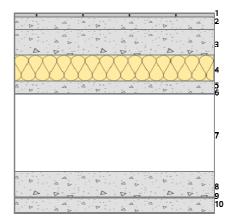
Codice: P1

Trasmittanza termica	0,203	W/m²K
Trasmittanza controterra	0,135	W/m ² K

Spessore **782** mm

Temperatura esterna

remperatura esterna -6,9 °C (calcolo potenza invernale)


Permeanza **0,001** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 512 kg/m²

Massa superficiale (senza intonaci) 512 kg/m²

Trasmittanza periodica **0,014** W/m²K

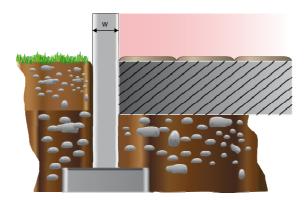
Fattore attenuazione **0,106** - Sfasamento onda termica **-17,4** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,170	-	-	1
1	Piastrelle in ceramica (piastrelle)	15,00	1,3000		2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,7000		1600	0,88	20
3	Sottofondo in cls e polistirene	100,00	0,0900	-	300	0,88	30
4	Polistirene espanso, estruso con pelle	100,00	0,0330	-	35	1,45	60
5	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600		2000	1,00	96
6	Polietilene, alta massa volumica	5,00	0,5000	-	980	1,80	100000
7	Intercapedine debolmente ventilata Av=600 mm²/m	300,00	1	1	-	-	-
8	Sottofondo di cemento magro	100,00	0,7000	-	1600	0,88	-
9	Impermeabilizzazione con PVC in fogli	2,00	0,1700	-	1390	0,90	-
10	Sottofondo di cemento magro	60,00	0,7000	-	1600	0,88	-
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	_

CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370


Pavimento appoggiato su terreno:

Pavimento su terreno 1 Codice: P1

Area del pavimento 623,15 m²
Perimetro disperdente del pavimento 128,25 m

Spessore pareti perimetrali esterne 510 mm

Conduttività termica del terreno 2,00 W/mK

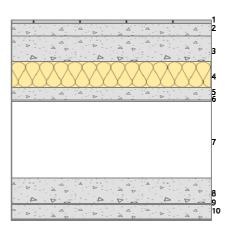
Descrizione della struttura: Pavimento su terreno 1

Trasmittanza termica **0,203** W/m²K
Trasmittanza controterra **0,135** W/m²K

Spessore 782 mm

Temperatura esterna (calcolo potenza invernale) -6,9 °C

Permeanza **0,001** 10⁻¹²kg/sm²Pa


Massa superficiale 512 kg/m²

(con intonaci)

Massa superficiale (senza intonaci) 512 kg/m²

Trasmittanza periodica **0,014** W/m²K

Fattore attenuazione **0,106** - Sfasamento onda termica **-17,4** h

Codice: P1

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,170	-	-	-
1	Piastrelle in ceramica (piastrelle)	15,00	1,3000	-	2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,7000	-	1600	0,88	20
3	Sottofondo in cls e polistirene	100,00	0,0900	-	300	0,88	30
4	Polistirene espanso, estruso con pelle	100,00	0,0330	-	<i>35</i>	1,45	60
5	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	-	2000	1,00	96
6	Polietilene, alta massa volumica	5,00	0,5000	-	980	1,80	100000
7	Intercapedine debolmente ventilata Av=600 mm²/m	300,00	1	1	1	-	-
8	Sottofondo di cemento magro	100,00	0,7000	-	1600	0,88	-
9	Impermeabilizzazione con PVC in fogli	2,00	0,1700	-	1390	0,90	-
10	Sottofondo di cemento magro	60,00	0,7000	-	1600	0,88	-
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370

Pavimento appoggiato su terreno:

Pavimento su terreno 1 Codice: P1

Area del pavimento 623,15 m²
Perimetro disperdente del pavimento 128,25 m

Spessore pareti perimetrali esterne 510 mm

Conduttività termica del terreno 2,00 W/mK

<u>Descrizione della struttura</u>: Pavimento su terreno 1

Codice: P1

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

%

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$) **Positiva**

Mese critico marzo

Fattore di temperatura del mese critico $f_{RSI,max}$ 0,574 Fattore di temperatura del componente f_{RSI} 0,948 Umidità relativa superficiale accettabile 80

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

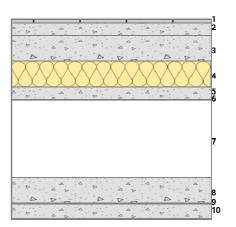
Descrizione della struttura: Pavimento su terreno 2

Trasmittanza termica **0,203** W/m²K **0,136** W/m²K Trasmittanza controterra

782 Spessore mm

Temperatura esterna -6,9 °C (calcolo potenza invernale)

10⁻¹²kg/sm²Pa 0,001 Permeanza


Massa superficiale **512** kg/m² (con intonaci)

Massa superficiale 512 kg/m²

(senza intonaci)

0,014 W/m²K Trasmittanza periodica

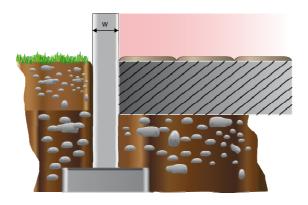
Fattore attenuazione 0,106 Sfasamento onda termica -17,4 h

Codice: P2

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,170	-	-	•
1	Piastrelle in ceramica (piastrelle)	15,00	1,3000		2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,7000		1600	0,88	20
3	Sottofondo in cls e polistirene	100,00	0,0900	-	300	0,88	30
4	Polistirene espanso, estruso con pelle	100,00	0,0330	-	35	1,45	60
5	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600		2000	1,00	96
6	Polietilene, alta massa volumica	5,00	0,5000	-	980	1,80	100000
7	Intercapedine debolmente ventilata Av=600 mm²/m	300,00	-	1	-	-	-
8	Sottofondo di cemento magro	100,00	0,7000		1600	0,88	•
9	Impermeabilizzazione con PVC in fogli	2,00	0,1700		1390	0,90	•
10	Sottofondo di cemento magro	60,00	0,7000	-	1600	0,88	-
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-


CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370

Pavimento appoggiato su terreno:

Pavimento su terreno 2

Codice: P2

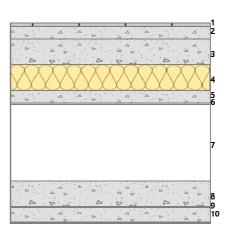
Area del pavimento	500,56	m²
Perimetro disperdente del pavimento	104,77	m
Spessore pareti perimetrali esterne	510	mm
Conduttività termica del terreno	2,00	W/mK

Descrizione della struttura: Pavimento su terreno 2

Trasmittanza termica **0,203** W/m²K
Trasmittanza controterra **0,136** W/m²K

Spessore 782 mm

Temperatura esterna (calcolo potenza invernale) -6,9 °C


Permeanza **0,001** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 512 kg/m²

Massa superficiale (senza intonaci) 512 kg/m²

Trasmittanza periodica **0,014** W/m²K

Fattore attenuazione **0,106** - Sfasamento onda termica **-17,4** h

Codice: P2

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,170	-	-	•
1	Piastrelle in ceramica (piastrelle)	15,00	1,3000		2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,7000	-	1600	0,88	20
3	Sottofondo in cls e polistirene	100,00	0,0900	-	300	0,88	30
4	Polistirene espanso, estruso con pelle	100,00	0,0330	-	35	1,45	60
5	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	-	2000	1,00	96
6	Polietilene, alta massa volumica	5,00	0,5000	-	980	1,80	100000
7	Intercapedine debolmente ventilata Av=600 mm²/m	300,00	1	1	-	-	-
8	Sottofondo di cemento magro	100,00	0,7000	-	1600	0,88	-
9	Impermeabilizzazione con PVC in fogli	2,00	0,1700	-	1390	0,90	-
10	Sottofondo di cemento magro	60,00	0,7000	-	1600	0,88	-
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370

Pavimento appoggiato su terreno:

Pavimento su terreno 2

Codice: P2

Area del pavimento 500,56 m²
Perimetro disperdente del pavimento 104,77 m

Spessore pareti perimetrali esterne 510 mm

Conduttività termica del terreno 2,00 W/mK

<u>Descrizione della struttura</u>: <u>Pavimento su terreno 2</u>

Codice: P2

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

%

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$) **Positiva**

Mese critico marzo

Fattore di temperatura del mese critico $f_{RSI,max}$ 0,574
Fattore di temperatura del componente f_{RSI} 0,948
Umidità relativa superficiale accettabile 80

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

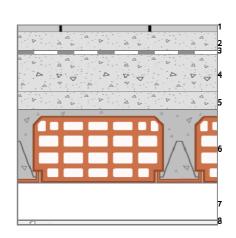
Descrizione della struttura: Solaio interpiano

Trasmittanza termica	0,413	W/m ² K
----------------------	-------	--------------------

Spessore 543 mm

Temperatura esterna 18,7 °C

(calcolo potenza invernale)


Permeanza **0,001** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 488 kg/m²

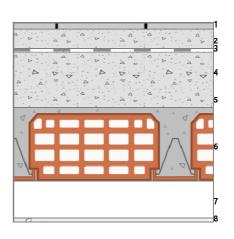
Massa superficiale (senza intonaci) 476 kg/m²

Trasmittanza periodica **0,019** W/m²K

Fattore attenuazione **0,047** - Sfasamento onda termica **-15,8** h

Codice: P3

Stratigrafia:


N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,170	-	-	-
1	Piastrelle in ceramica (piastrelle)	20,00	1,3000	0,015	2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,7000	0,071	1600	0,88	20
3	Tapppetino anticalpestio	10,00	0,0370	0,270	30	1,30	129000
4	Sottofondo in cls e polistirene	100,00	0,0900	1,111	300	0,88	30
5	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	0,040	2000	1,00	96
6	Soletta in laterizio spess. 18-20 - Inter. 50	200,00	0,6600	0,303	1100	0,84	7
7	Intercapedine non ventilata Av<500 mm²/m	100,00	0,4545	0,220	-	-	-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale esterna	-	-	0,170	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> Solaio interpiano

Trasmittanza termica	0,413	W/m²K
Spessore	543	mm
Temperatura esterna (calcolo potenza invernale)	18,7	°C
Permeanza	0,001	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	488	kg/m²
Massa superficiale (senza intonaci)	476	kg/m²
Trasmittanza periodica	0,019	W/m ² K
Fattore attenuazione	0,047	-

-15,8 h

Codice: P3

Stratigrafia:

Sfasamento onda termica

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,170	-	-	-
1	Piastrelle in ceramica (piastrelle)	20,00	1,3000	0,015	2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,7000	0,071	1600	0,88	20
3	Tapppetino anticalpestio	10,00	0,0370	0,270	30	1,30	129000
4	Sottofondo in cls e polistirene	100,00	0,0900	1,111	300	0,88	30
5	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	0,040	2000	1,00	96
6	Soletta in laterizio spess. 18-20 - Inter. 50	200,00	0,6600	0,303	1100	0,84	7
7	Intercapedine non ventilata Av<500 mm²/m	100,00	0,4545	0,220	-	-	-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale esterna	-	_	0,170	_	-	-

<u>Legenda simboli</u>

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura</u>: <u>Solaio interpiano</u>

Codice: P3

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

%

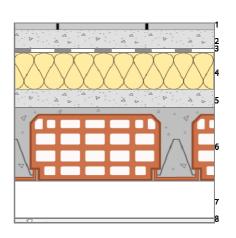
Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$) **Positiva**

Mese critico -

Fattore di temperatura del mese critico $f_{RSI,max}$ -1,000 Fattore di temperatura del componente f_{RSI} 0,903 Umidità relativa superficiale accettabile

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)


Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

<u>Descrizione della struttura:</u> Solaio interpiano su esterno

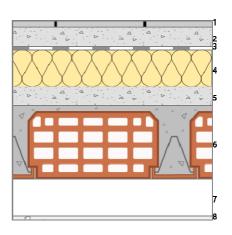
Codice: P4

Trasmittanza termica	0,236	W/m ² K
Spessore	543	mm
Temperatura esterna (calcolo potenza invernale)	-6,9	°C
Permeanza	0,001	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	461	kg/m²
Massa superficiale (senza intonaci)	450	kg/m²
Trasmittanza periodica	0,012	W/m ² K
Fattore attenuazione	0,051	-

-14,6 h

Stratigrafia:

Sfasamento onda termica


N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,170		-	-
1	Piastrelle in ceramica (piastrelle)	20,00	1,3000	0,015	2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,7000	0,071	1600	0,88	20
3	Tapppetino anticalpestio	10,00	0,0370	0,270	30	1,30	129000
4	Polistirene espanso, estruso con pelle	100,00	0,0330	3,030	<i>35</i>	1,45	60
5	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	0,040	2000	1,00	96
6	Soletta in laterizio spess. 18-20 - Inter. 50	200,00	0,6600	0,303	1100	0,84	7
7	Intercapedine non ventilata Av<500 mm²/m	100,00	0,4545	0,220	-	-	-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale esterna	-	-	0,073	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> Solaio interpiano su esterno

Codice: P4

Trasmittanza termica	0,238	W/m ² K
Spessore	543	mm
Temperatura esterna (calcolo potenza invernale)	-6,9	°C
Permeanza	0,001	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	461	kg/m²
Massa superficiale (senza intonaci)	450	kg/m²
Trasmittanza periodica	0,012	W/m²K
Fattore attenuazione	0,051	-
Sfasamento onda termica	-14,6	h

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,170	-	-	-
1	Piastrelle in ceramica (piastrelle)	20,00	1,3000	0,015	2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,7000	0,071	1600	0,88	20
3	Tapppetino anticalpestio	10,00	0,0370	0,270	30	1,30	129000
4	Polistirene espanso, estruso con pelle	100,00	0,0330	3,030	<i>35</i>	1,45	60
5	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	0,040	2000	1,00	96
6	Soletta in laterizio spess. 18-20 - Inter. 50	200,00	0,6600	0,303	1100	0,84	7
7	Intercapedine non ventilata Av<500 mm²/m	100,00	0,4545	0,220	-	-	-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale esterna	_	_	0,040	_	_	-

<u>Legenda simboli</u>

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura</u>: Solaio interpiano su esterno

Codice: P4

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

Verifica criticità di condensa superficiale

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

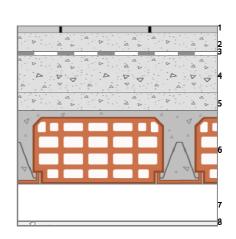
Descrizione della struttura: Solaio interpiano

Trasmittanza termica	0,450	W/m ² K
----------------------	-------	--------------------

Spessore 543 mm

Temperatura esterna 18,7 °C

(calcolo potenza invernale)


Permeanza **0,001** 10⁻¹²kg/sm²Pa

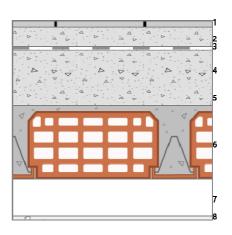
Massa superficiale (con intonaci) 488 kg/m²

Massa superficiale (senza intonaci) 476 kg/m²

Trasmittanza periodica **0,033** W/m²K

Fattore attenuazione **0,074** - Sfasamento onda termica **-14,7** h

Codice: S1


Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-		0,100		-	-
1	Piastrelle in ceramica (piastrelle)	20,00	1,3000	0,015	2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,7000	0,071	1600	0,88	20
3	Tapppetino anticalpestio	10,00	0,0370	0,270	30	1,30	129000
4	Sottofondo in cls e polistirene	100,00	0,0900	1,111	300	0,88	30
5	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	0,040	2000	1,00	96
6	Soletta in laterizio spess. 18-20 - Inter. 50	200,00	0,6600	0,303	1100	0,84	7
7	Intercapedine non ventilata Av<500 mm²/m	100,00	0,6250	0,160	-	-	-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale interna	-	-	0,100	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> Solaio interpiano

Trasmittanza termica	0,450	W/m²K
Spessore	543	mm
Temperatura esterna (calcolo potenza invernale)	18,7	°C
Permeanza	0,001	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	488	kg/m²
Massa superficiale (senza intonaci)	476	kg/m²
Trasmittanza periodica	0,033	W/m ² K
Fattore attenuazione	0,074	-
Sfasamento onda termica	-14,7	h

Codice: 51

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,100	-	-	-
1	Piastrelle in ceramica (piastrelle)	20,00	1,3000	0,015	2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,7000	0,071	1600	0,88	20
3	Tapppetino anticalpestio	10,00	0,0370	0,270	30	1,30	129000
4	Sottofondo in cls e polistirene	100,00	0,0900	1,111	300	0,88	30
5	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	0,040	2000	1,00	96
6	Soletta in laterizio spess. 18-20 - Inter. 50	200,00	0,6600	0,303	1100	0,84	7
7	Intercapedine non ventilata Av<500 mm²/m	100,00	0,6250	0,160	-	-	-
8	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale interna	-	_	0,100	-	_	_

<u>Legenda simboli</u>

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura</u>: <u>Solaio interpiano</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
 [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

%

Verifica criticità di condensa superficiale

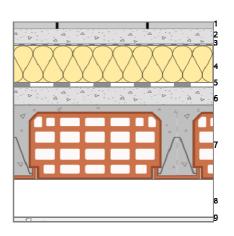
Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$) **Positiva**

Mese critico -

Fattore di temperatura del mese critico $f_{RSI,max}$ -1,000 Fattore di temperatura del componente f_{RSI} 0,901 Umidità relativa superficiale accettabile

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.


Codice: S1

<u>Descrizione della struttura:</u> Solaio interpiano terrazza

Codice: 52

Trasmittanza termica	0,243	W/m ² K
Spessore	<i>537</i>	mm
Temperatura esterna (calcolo potenza invernale)	-6,9	°C
Permeanza	0,001	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	450	kg/m²
Massa superficiale (senza intonaci)	439	kg/m²
Trasmittanza periodica Fattore attenuazione	0,019 0,080	W/m²K -

-13,0 h

Stratigrafia:

Sfasamento onda termica

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-		0,073		-	-
1	Piastrelle in ceramica (piastrelle)	20,00	1,3000	0,015	2300	0,84	9999999
2	Sottofondo di cemento magro	40,00	0,7000	0,057	1600	0,88	20
3	Impermeabilizzazione con bitume	4,00	0,1700	0,024	1200	1,00	188000
4	Polistirene espanso, estruso con pelle	100,00	0,0330	3,030	<i>35</i>	1,45	60
5	Tapppetino anticalpestio	10,00	0,0370	0,270	30	1,30	129000
6	C.I.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	0,040	2000	1,00	96
7	Soletta in laterizio spess. 18-20 - Inter. 50	200,00	0,6600	0,303	1100	0,84	7
8	Intercapedine non ventilata Av<500 mm²/m	100,00	0,6250	0,160	-	-	-
9	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale interna	-	-	0,100	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> Solaio interpiano terrazza

Trasmittanza termica	0,245	W/m ² K
----------------------	-------	--------------------

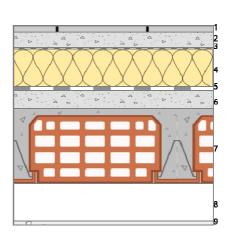
Spessore 537 mm

Temperatura esterna -6,9 °C

(calcolo potenza invernale)

Permeanza

0,001


10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 450 kg/m²

Massa superficiale (senza intonaci) 439 kg/m²

Trasmittanza periodica **0,019** W/m²K

Fattore attenuazione 0,080 Sfasamento onda termica -13,0 h

Codice: 52

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	1	0,040	-	-	-
1	Piastrelle in ceramica (piastrelle)	20,00	1,3000	0,015	2300	0,84	9999999
2	Sottofondo di cemento magro	40,00	0,7000	0,057	1600	0,88	20
3	Impermeabilizzazione con bitume	4,00	0,1700	0,024	1200	1,00	188000
4	Polistirene espanso, estruso con pelle	100,00	0,0330	3,030	35	1,45	60
5	Tapppetino anticalpestio	10,00	0,0370	0,270	30	1,30	129000
6	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	0,040	2000	1,00	96
7	Soletta in laterizio spess. 18-20 - Inter. 50	200,00	0,6600	0,303	1100	0,84	7
8	Intercapedine non ventilata Av<500 mm²/m	100,00	0,6250	0,160	-	-	-
9	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale interna	-	-	0,100	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura</u>: Solaio interpiano terrazza

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
 [] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [x] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Verifica condensa interstiziale

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

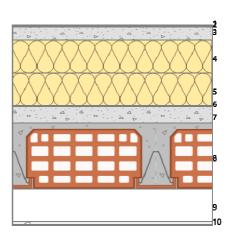
Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

Positiva

Verifica criticità di condensa superficiale

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Quantità massima di condensa durante l'anno M_a **1** g/m² Quantità di condensa ammissibile M_{lim} **70** g/m² Verifica di condensa ammissibile $(M_a \le M_{lim})$ **Positiva**


Mese con massima condensa accumulata marzo
L'evaporazione a fine stagione è Completa

Codice: S2

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

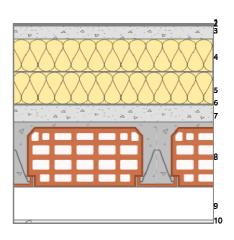
Descrizione della struttura: Copertura

Trasmittanza termica	0,146	W/m²K
Spessore	612	mm
Temperatura esterna (calcolo potenza invernale)	-6,9	°C
Permeanza	0,123	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	422	kg/m²
Massa superficiale (senza intonaci)	410	kg/m²
Trasmittanza periodica	0,010	W/m²K
Fattore attenuazione	0,068	-
Sfasamento onda termica	-14,7	h

Codice: 53

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,073	-	-	-
1	Impermeabilizzazione in bitume e sabbia	4,00	0,2600	0,015	1300	1,00	188000
2	Impermeabilizzazione in bitume e sabbia	4,00	0,2600	0,015	1300	1,00	188000
3	Sottofondo di cemento magro	40,00	0,9000	0,044	1800	0,88	30
4	Polistirene espanso, estruso con pelle	100,00	0,0330	3,030	<i>35</i>	1,45	60
5	Polistirene espanso, estruso con pelle	100,00	0,0330	3,030	<i>35</i>	1,45	60
6	Barriera vapore in fogli di polietilene	1,00	0,3300	0,003	920	2,20	100000
7	C.I.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	0,040	2000	1,00	96
8	Soletta in laterizio spess. 18-20 - Inter. 50	200,00	0,6600	0,303	1100	0,84	7
9	Intercapedine non ventilata Av<500 mm²/m	100,00	0,6250	0,160	-	-	-
10	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale interna	-	-	0,100	-	1	-


Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI EN 12831 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Copertura

Trasmittanza termica	0,146	W/m²K
Spessore	612	mm
Temperatura esterna (calcolo potenza invernale)	-6,9	°C
Permeanza	0,123	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	422	kg/m²
Massa superficiale (senza intonaci)	410	kg/m²
Trasmittanza periodica	0,010	W/m ² K
Fattore attenuazione	0,068	-
Sfasamento onda termica	-14,7	h

Codice: 53

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	1	0,040	-		1
1	Impermeabilizzazione in bitume e sabbia	4,00	0,2600	0,015	1300	1,00	188000
2	Impermeabilizzazione in bitume e sabbia	4,00	0,2600	0,015	1300	1,00	188000
3	Sottofondo di cemento magro	40,00	0,9000	0,044	1800	0,88	30
4	Polistirene espanso, estruso con pelle	100,00	0,0330	3,030	35	1,45	60
5	Polistirene espanso, estruso con pelle	100,00	0,0330	3,030	35	1,45	60
6	Barriera vapore in fogli di polietilene	1,00	0,3300	0,003	920	2,20	100000
7	C.l.s. di sabbia e ghiaia (pareti esterne)	50,00	1,2600	0,040	2000	1,00	96
8	Soletta in laterizio spess. 18-20 - Inter. 50	200,00	0,6600	0,303	1100	0,84	7
9	Intercapedine non ventilata Av<500 mm²/m	100,00	0,6250	0,160	-		
10	Cartongesso in lastre	12,50	0,2500	0,050	900	1,00	10
-	Resistenza superficiale interna	-	-	0,100	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>Copertura</u> Codice: <u>S3</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [x] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Verifica condensa interstiziale

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,004 kg/m³)

Positiva

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)

Positiva

Mese critico

dicembre

Fattore di temperatura del mese critico $f_{RSI,max}$ 0,663

Fattore di temperatura del componente f_{RSI} 0,964

Umidità relativa superficiale accettabile

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Quantità massima di condensa durante l'anno M_a $8~g/m^2$ Quantità di condensa ammissibile M_{lim} $100~g/m^2$

Verifica di condensa ammissibile ($M_a \leq M_{lim}$)

Positiva

Mese con massima condensa accumulata marzo
L'evaporazione a fine stagione è Completa

Descrizione della finestra: 40*176

Codice: W1

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari e delle schermature

Emissività	3	0,250	-
Fattore di trasmittanza solare	$g_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	g_{gl+sh}	0,227	-

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

<u>Dimensioni e caratteristiche del serramento</u>

Larghezza	40,0	cm
Altezza H	176.0	cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	0,704	m^2
Area vetro	A_g	0,384	m^2
Area telaio	A_f	0,320	m^2
Fattore di forma	F_f	0,55	-
Perimetro vetro	L_g	3,680	m
Perimetro telaio	L_f	4,320	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,879 W/m²K

Ponte termico associato	Z1	W - Parete - Tela		
Trasmittanza termica lineica	Ψ	0,112	W/mK	
Lunghezza perimetrale		4,32	m	

Descrizione della finestra: 40*176

Codice: W1

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 0,55 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 40,0 cm Altezza H 176,0 cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mk
Area totale	A_{w}	0,704	m^2
Area vetro	A_g	0,384	m^2
Area telaio	A_f	0,320	m^2
Fattore di forma	F_f	0,55	-
Perimetro vetro	L_g	<i>3,680</i>	m
Perimetro telaio	L_f	4,320	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,985 W/m²K

Ponte termico associato	Z1	W - Parete - Telai		
Trasmittanza termica lineica	Ψ	0,112	W/mK	
Lunghezza perimetrale		4,32	m	

Descrizione della finestra: 583*270

Codice: W2

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il	calcolo de	ıli apporti	i solari e	delle schermature
Duti per ii	carcoro ac-	411 apport	Join C	aciic scrici illacai c

Emissività	ε	0,250	_
Fattore di trasmittanza solare	$g_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c \text{ est}}$	0,55	-
Fattore trasmissione solare totale	g gl+sh	0,227	-

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	<i>583,0</i>	cm
Altezza H	270,0	cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	<i>15,741</i>	m^2
Area vetro	\mathbf{A}_{g}	13,640	m^2
Area telaio	A_f	2,101	m^2
Fattore di forma	F_f	0 ,87	-
Perimetro vetro	L_g	31,060	m
Perimetro telaio	L_f	17,060	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,316 W/m²K

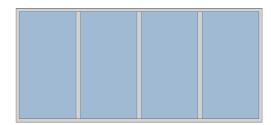
Ponte termico associato	Z1	w - Paret	e - Telaio
Trasmittanza termica lineica	Ψ	0,112	W/mK
Lunghezza perimetrale		<i>17,06</i>	m

Descrizione della finestra: 583*270

Codice: W2

Caratteristiche del serramento

Tipologia di serramento


Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività	3	0,250	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore di trasmittanza solare	$g_{gl,n}$	0,420	-
Fattore trasmissione solare totale	g_{gl+sh}	0,227	-

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure	0,12	m^2K/W
f shut	0,6	-

Dimensioni e caratteristiche del serramento

Larghezza	<i>583,0</i>	cm
Altezza H	270,0	cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	15,741	m^2
Area vetro	A_g	13,640	m^2
Area telaio	A_f	2,101	m^2
Fattore di forma	F_f	0,87	-
Perimetro vetro	L_g	31,060	m
Perimetro telaio	L_f	17,060	m

Caratteristiche del modulo

Trasmittanza term	ica del modulo	U	1,421	W/m ² K
		•	_,	,

Ponte termico associato	Z1	W - Parete - Telaio		
Trasmittanza termica lineica	Ψ	0,112 W/mK		
Lunghezza perimetrale		17,06 m		

Descrizione della finestra: 250*560

Codice: W3

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari e delle schermature

Emissività	3	0,250	-
Fattore di trasmittanza solare	$\mathbf{g}_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	Q _{al+sh}	0,227	-

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	250,0	cm
Altezza H	560,0	cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_w	14,000	m^2
Area vetro	A_{g}	<i>12,730</i>	m^2
Area telaio	A_f	1,270	m^2
Fattore di forma	F_f	0,91	-
Perimetro vetro	L_g	<i>15,560</i>	m
Perimetro telaio	L_f	16,200	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,324 W/m²K

Ponte termico associato	Z1	W - Parete - Telaio		
Trasmittanza termica lineica	Ψ	0,112 W/mK		
Lunghezza perimetrale		16,20 m		

Descrizione della finestra: 250*560

Codice: W3

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 0,55 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza **250,0** cm Altezza H **560,0** cm

Caratteristiche del telaio

K distanziale	K_{d}	0,000	W/mK
Area totale	A_w	14,000	m^2
Area vetro	A_g	12,730	m^2
Area telaio	A_f	1,270	m^2
Fattore di forma	F_f	0,91	-
Perimetro vetro	Lg	<i>15,560</i>	m
Perimetro telaio	L_f	16,200	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,429 W/m²K

Ponte termico associato	Z1	W - Parete - Telaio		
Trasmittanza termica lineica	Ψ	0,112	W/mK	
Lunghezza perimetrale		16,20	m	

Descrizione della finestra: 300*560

Codice: W4

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari e delle schermature

Emissività	3	0,250	-
Fattore di trasmittanza solare	$\mathbf{g}_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	Q _{al+sh}	0,227	-

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure		0,12	m^2K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	300,0	cm
Altezza H	560,0	cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_w	16,800	m^2
Area vetro	A_g	<i>15,450</i>	m^2
Area telaio	A_f	1,350	m^2
Fattore di forma	F_f	0,92	-
Perimetro vetro	L_g	16,560	m
Perimetro telaio	L_f	17,200	m

Caratteristiche del modulo

Trasmittanza termica del modulo U **1,309** W/m²K

Ponte termico associato	Z1	W - Paret	e - Telaio
Trasmittanza termica lineica	Ψ	0,112	W/mK
Lunghezza perimetrale		17,20	m

Descrizione della finestra: 300*560

Codice: W4

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c inv}$ 0,55 - Fattore tendaggi (estivo) $f_{c est}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 300,0 cm Altezza H 560,0 cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	16,800	m^2
Area vetro	\mathbf{A}_{g}	15,450	m^2
Area telaio	A_f	1,350	m^2
Fattore di forma	F_f	0,92	-
Perimetro vetro	L_g	16,560	m
Perimetro telaio	L_f	17,200	m

Caratteristiche del modulo

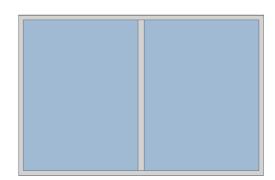
Trasmittanza termica del modulo U **1,414** W/m²K

Ponte termico associato	Z1	W - Paret	e - Telaio
Trasmittanza termica lineica	Ψ	0,112	W/mK
Lunghezza perimetrale		17,20	m

Descrizione della finestra: 413*270

Codice: W5

Tipologia di serramento


Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari e delle schermature

Emissività	3	0,250	-
Fattore di trasmittanza solare	$g_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	G gl+sh	0,227	-

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{\text{w,e}}$	1,195	W/m^2K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	413,0	cm
Altezza H	270,0	cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	11,151	m^2
Area vetro	A_g	9,830	m^2
Area telaio	A_f	1,321	m^2
Fattore di forma	F_f	0,88	-
Perimetro vetro	Lg	17,900	m
Perimetro telaio	L_f	13,660	m

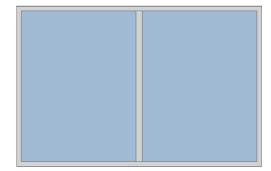
Caratteristiche del modulo

Trasmittanza termica del modulo U 1,331 W/m²K

Ponte termico associato	21	W - Parete - Telaio
Trasmittanza termica lineica	Ψ	0,112 W/mK
Lunghezza perimetrale		13,66 m

Descrizione della finestra: 413*270

Codice: W5


Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari

Emissività	ε	0,250	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore di trasmittanza solare	$g_{gl,n}$	0,420	-
Fattore trasmissione solare totale	g_{gl+sh}	0,227	-

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

<u>Dimensioni e caratteristiche del serramento</u>

Larghezza 413,0 cm Altezza H 270,0 cm

Caratteristiche del telaio

K distanziale	K_{d}	0,000	W/mK
Area totale	A_{w}	11,151	m^2
Area vetro	\mathbf{A}_{g}	9,830	m^2
Area telaio	A_f	1,321	m^2
Fattore di forma	F_f	0,88	-
Perimetro vetro	L_g	17,900	m
Perimetro telaio	l e	13.660	m

Caratteristiche del modulo

Trasmittanza termica del modulo U **1,437** W/m²K

Ponte termico associato	Z1	W - Parete - Telaio	
Trasmittanza termica lineica	Ψ	0,112 W/mK	
Lunghezza perimetrale		13,66 m	

Descrizione della finestra: 180*270

Codice: W6

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari e delle schermature

Emissività	ε	0,250	-
Fattore di trasmittanza solare	$\mathbf{g}_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	g gl+sh	0,227	-

Caratteristiche delle chiusure oscuranti

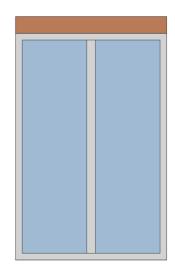
Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	180,0	cm
Altezza H	270,0	cm

Caratteristiche del telaio


K distanziale	K_d	0,000	W/mK
Area totale	A_w	4,860	m^2
Area vetro	A_g	3,912	m^2
Area telaio	A_f	0,948	m²
Fattore di forma	F_f	0,80	-
Perimetro vetro	L_g	13,240	m
Perimetro telaio	Lf	9,000	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,342 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	<i>M7</i>	Cassonetto	
Trasmittanza termica	U	0,536	W/m^2K
Altezza	H_{cass}	20,0	cm
Larghezza	L_{cass}	180,0	cm
Profondità	P_{cass}	0,0	cm
Area frontale		0,36	m^2

Ponte termico del serramento

Descrizione della finestra: 180*270

Codice: W6

Tipologia di serramento

Classe 4 secondo Norma Classe di permeabilità

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività 3 0,250 -Fattore tendaggi (invernale) 0,55 $f_{c inv}$ Fattore tendaggi (estivo) 0,55 $f_{c est}$ Fattore di trasmittanza solare 0,420 $g_{gl,n}$ Fattore trasmissione solare totale 0,227 g_{gl+sh}

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,12** m²K/W f shut 0,6

Dimensioni e caratteristiche del serramento

Larghezza **180,0** cm Altezza H **270,0** cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	4,860	m^2
Area vetro	\mathbf{A}_{g}	3,912	m^2
Area telaio	A_f	0,948	m^2
Fattore di forma	F_f	0,80	-
Perimetro vetro	L_g	13,240	m
Perimetro telaio	l _f	9.000	m

Caratteristiche del modulo

Trasmittanza termica del modulo U **1,440** W/m²K

Cassonetto

Struttura opaca associata	<i>M7</i>	Cassonetto	
Trasmittanza termica	U	0,546	W/m ² K
Altezza	H_{cass}	20,00	cm
Larghezza	L_{cass}	180,0	cm
Profondità	P_{cass}	0,00	cm
Area frontale		0,36	m^2

Ponte termico associato	Z1	W - Paret	e - Telaio
Trasmittanza termica lineica	Ψ	0,112	W/mK
Lunghezza perimetrale		9,00	m

Descrizione della finestra: 200*270

Codice: W7

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari e delle schermature

Emissività	ε	0,250	-
Fattore di trasmittanza solare	$\mathbf{g}_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	g gl+sh	0,227	-

Caratteristiche delle chiusure oscuranti

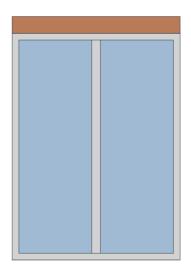
Resistenza termica chiusure		0,12	m ² K/W
fshut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	200,0	cm
Altezza H	270,0	cm

Caratteristiche del telaio


K distanziale	K_{d}	0,000	W/mK
Area totale	A_{w}	<i>5,400</i>	m^2
Area vetro	A_g	4,420	m^2
Area telaio	A_f	0,980	m^2
Fattore di forma	F_f	0,82	-
Perimetro vetro	Lg	13,640	m
Perimetro telaio	L_f	9,400	m

Caratteristiche del modulo

Trasmittanza termica del modulo U **1,330** W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonetto	
Trasmittanza termica	U	0,536	W/m^2K
Altezza	H_{cass}	20,0	cm
Larghezza	L_{cass}	200,0	cm
Profondità	P_{cass}	0,0	cm
Area frontale		0,40	m^2

Ponte termico del serramento

Descrizione della finestra: 200*270

Codice: W7

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c inv}$ 0,55 - Fattore tendaggi (estivo) $f_{c est}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

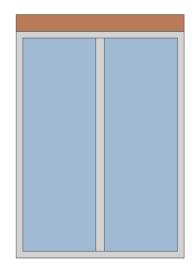
Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 200,0 cm Altezza H 270,0 cm

Caratteristiche del telaio


K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	5,400	m^2
Area vetro	A_{g}	4,420	m^2
Area telaio	A_f	0,980	m^2
Fattore di forma	F_f	0,82	-
Perimetro vetro	L_g	13,640	m
Perimetro telaio	۱,	9.400	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,429 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonetto	
Trasmittanza termica	U	0,546	W/m ² K
Altezza	H_{cass}	20,00	cm
Larghezza	L_{cass}	200,0	cm
Profondità	P_{cass}	0,00	cm
Area frontale		0,40	m^2

Ponte termico associato	Z1	W - Parete - Tela		
Trasmittanza termica lineica	Ψ	0,112	W/mK	
Lunghezza perimetrale		9,40	m	

Descrizione della finestra: 250*270

Codice: W8

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari e delle schermature

Emissività	ε	0,250	-
Fattore di trasmittanza solare	$\mathbf{g}_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c \text{ est}}$	0,55	-
Fattore trasmissione solare totale	g gl+sh	0,227	-

Caratteristiche delle chiusure oscuranti

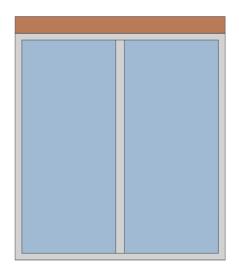
Resistenza termica chiusure		0,12	m^2K/W
f shut		0,6	-
Trasmittanza serramento *	U _{w a}	1.195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	250,0	cm
Altezza H	270,0	cm

Caratteristiche del telaio


K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	<i>6,750</i>	m^2
Area vetro	A_{g}	5,690	m^2
Area telaio	A_f	1,060	m^2
Fattore di forma	F_f	0,84	-
Perimetro vetro	L_g	14,640	m
Perimetro telaio	L_f	10,400	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,309 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonetto	
Trasmittanza termica	U	0,536	W/m^2K
Altezza	H_{cass}	20,0	cm
Larghezza	L_{cass}	250,0	cm
Profondità	P_{cass}	0,0	cm
Area frontale		0,50	m^2

Ponte termico del serramento

Descrizione della finestra: 250*270

Codice: W8

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c inv}$ 0,55 - Fattore tendaggi (estivo) $f_{c est}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 250,0 cm Altezza H 270,0 cm

Caratteristiche del telaio

K distanziale	K_{d}	0,000	W/mK
Area totale	A_{w}	<i>6,750</i>	m^2
Area vetro	A_g	<i>5,690</i>	m^2
Area telaio	A_f	1,060	m^2
Fattore di forma	F_f	0,84	-
Perimetro vetro	L_g	14,640	m
Perimetro telaio	l f	10.400	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,408 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	<i>M7</i>	Cassonetto	
Trasmittanza termica	U	0,546	W/m ² K
Altezza	H_{cass}	20,00	cm
Larghezza	L_{cass}	250,0	cm
Profondità	P_{cass}	0,00	cm
Area frontale		0,50	m^2

Ponte termico associato	Z1	W - Parete - Tela		
Trasmittanza termica lineica	Ψ	0,112	W/mK	
Lunghezza perimetrale		10,40	m	

Descrizione della finestra: 50*220

Codice: W9

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari e delle schermature

Emissività	3	0,250	-
Fattore di trasmittanza solare	$\mathbf{g}_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	g gl+sh	0,227	-

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	50,0	cm
Altezza H	220,0	cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	1,100	m^2
Area vetro	A_g	0,694	m^2
Area telaio	A_f	0,406	m^2
Fattore di forma	F_f	0,63	-
Perimetro vetro	L_g	4,760	m
Perimetro telaio	L_f	5,400	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,642 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonetto	
Trasmittanza termica	U	0,536	W/m^2K
Altezza	H_{cass}	20,0	cm
Larghezza	L_{cass}	<i>50,0</i>	cm
Profondità	P_{cass}	0,0	cm
Area frontale		0,10	m^2

Ponte termico del serramento

Descrizione della finestra: 50*220

Codice: W9

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c inv}$ 0,55 - Fattore tendaggi (estivo) $f_{c est}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 50,0 cm Altezza H 220,0 cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_w	1,100	m^2
Area vetro	A_g	0,694	m^2
Area telaio	A_f	0,406	m^2
Fattore di forma	F_f	0,63	-
Perimetro vetro	L_g	4,760	m
Perimetro telaio	L_f	5,400	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,739 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonett	o
Trasmittanza termica	U	0,546	W/m ² K
Altezza	H_{cass}	20,00	cm
Larghezza	L_{cass}	<i>50,0</i>	cm
Profondità	P_{cass}	0,00	cm
Area frontale		0,10	m^2

Ponte termico associato	Z1	W - Parete - Telai		
Trasmittanza termica lineica	Ψ	0,112	W/mK	
Lunghezza perimetrale		5,40	m	

Descrizione della finestra: 120*250

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari e delle schermature

Emissività	ε	0,250	-
Fattore di trasmittanza solare	$\mathbf{g}_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c \text{ est}}$	0,55	-
Fattore trasmissione solare totale	g gl+sh	0,227	-

Caratteristiche delle chiusure oscuranti

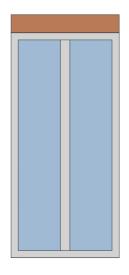
Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	120,0	cm
Altezza H	250,0	cm

Caratteristiche del telaio


K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	3,000	m^2
Area vetro	A_g	2,200	m^2
Area telaio	A_f	0,800	m^2
Fattore di forma	F_f	0,73	-
Perimetro vetro	L_g	11,240	m
Perimetro telaio	Lf	7,400	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,401 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonetto	
Trasmittanza termica	U	0,536	W/m^2K
Altezza	H_{cass}	20,0	cm
Larghezza	L_{cass}	120,0	cm
Profondità	P_{cass}	0,0	cm
Area frontale		0,24	m^2

Codice: W10

Ponte termico del serramento

Descrizione della finestra: 120*250

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c inv}$ 0,55 - Fattore tendaggi (estivo) $f_{c est}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

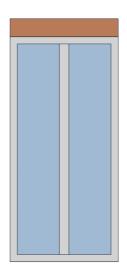
Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 120,0 cm Altezza H 250,0 cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	3,000	m^2
Area vetro	A_g	2,200	m^2
Area telaio	A_f	0,800	m^2
Fattore di forma	F_f	<i>0,73</i>	-
Perimetro vetro	L_g	11,240	m
Perimetro telaio	l f	7.400	m


Caratteristiche del modulo

Trasmittanza termica del modulo U 1,499 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonett	to
Trasmittanza termica	U	0,546	W/m ² K
Altezza	H_{cass}	20,00	cm
Larghezza	L_{cass}	120,0	cm
Profondità	P_{cass}	0,00	cm
Area frontale		0,24	m^2

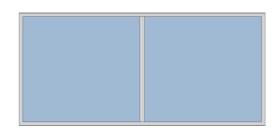
Ponte termico del serramento

Codice: W10

Ponte termico associato	Z1	W - Paret	e - Telaio
Trasmittanza termica lineica	Ψ	0,112	W/mK
Lunghezza perimetrale		7,40	m

Descrizione della finestra: 546*250

Caratteristiche del serramento


Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari e delle schermature

Emissività	3	0,250	-
Fattore di trasmittanza solare	$g_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	g gl+sh	0,227	-

Codice: W11

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

<u>Dimensioni e caratteristiche del serramento</u>

Larghezza	<i>546,0</i>	cm
Altezza H	250,0	cm

Caratteristiche del telaio

K distanziale	K_{d}	0,000	W/mK
Area totale	A_{w}	13,650	m^2
Area vetro	\mathbf{A}_{g}	<i>12,168</i>	m^2
Area telaio	A_f	1,482	m^2
Fattore di forma	F_f	0,89	-
Perimetro vetro	L_g	19,760	m
Perimetro telaio	L_f	<i>15,920</i>	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,325 W/m²K

Ponte termico associato	Z1	W - Paret	e - Telaio
Trasmittanza termica lineica	Ψ	0,112	W/mK
Lunghezza perimetrale		15,92	m

Descrizione della finestra: 546*250

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 0,55 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

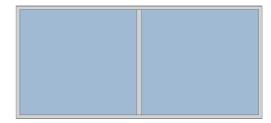
Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

 Larghezza
 546,0 cm

 Altezza H
 250,0 cm

Caratteristiche del telaio


K distanziale	K_d	0,000	W/mK
Area totale	A_w	13,650	m^2
Area vetro	A_g	12,168	m^2
Area telaio	A_f	1,482	m^2
Fattore di forma	F_f	0,89	-
Perimetro vetro	L_g	19,760	m
Perimetro telaio	L_f	15,920	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,430 W/m²K

Ponte termico del serramento

Ponte termico associato $\begin{tabular}{lll} \it{Z1} &\it{W-Parete-Telaio} \\ \it{Trasmittanza termica lineica} &\it{\Psi} &\it{0,112} &\it{W/mK} \\ \it{Lunghezza perimetrale} &\it{15,92} &\it{m} \\ \end{tabular}$

Codice: W11

Descrizione della finestra: 210*240

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari e delle schermature

Emissività	3	0,250	-
Fattore di trasmittanza solare	$g_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	g gl+sh	0,227	-

Caratteristiche delle chiusure oscuranti

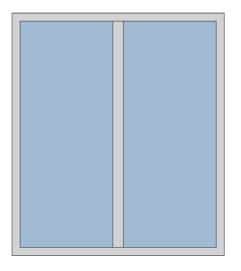
Resistenza termica chiusure		0,12	m^2K/W
f shut		0,6	-
Trasmittanza serramento *	U _{w a}	1.195	W/m ² K

* Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	210,0	cm
Altezza H	240,0	cm

Caratteristiche del telaio


K distanziale	K_d	0,000	W/mK
Area totale	A_w	5,040	m^2
Area vetro	A_g	4,122	m^2
Area telaio	A_f	0,918	m^2
Fattore di forma	F_f	0,82	-
Perimetro vetro	L_g	12,640	m
Perimetro telaio	l f	9.000	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,394 W/m²K

Ponte termico del serramento

Ponte termico associato	Z1	W - Paret	e - Telaio)
Trasmittanza termica lineica	Ψ	0,112	W/mK	
Lunghezza perimetrale		9,00	m	

Codice: W12

Descrizione della finestra: 210*240

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

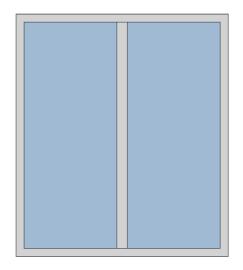
Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c inv}$ 0,55 - Fattore tendaggi (estivo) $f_{c est}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 210,0 cm Altezza H 240,0 cm


Caratteristiche del telaio

K distanziale	K_{d}	0,000	W/mK
Area totale	A_{w}	5,040	m^2
Area vetro	A_g	4,122	m^2
Area telaio	A_f	0,918	m^2
Fattore di forma	F_f	0,82	-
Perimetro vetro	L_g	12,640	m
Perimetro telaio	L_f	9,000	m

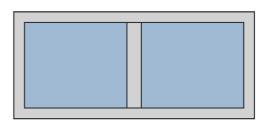
Caratteristiche del modulo

Trasmittanza termica del modulo U 1,499 W/m²K

Ponte termico del serramento

Descrizione della finestra: 180*80

Caratteristiche del serramento


Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari e delle schermature

Emissività	ε	0,250	-
Fattore di trasmittanza solare	$\mathbf{g}_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	Q _{al+sh}	0,227	_

Codice: W13

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure		0,12	m^2K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m^2K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	180,0	cm
Altezza H	80,0	cm

Caratteristiche del telaio

K distanziale	K_{d}	0,000	W/mK
Area totale	A_{w}	1,440	m^2
Area vetro	A_g	0,986	m^2
Area telaio	A_f	0,454	m^2
Fattore di forma	F_f	0,68	-
Perimetro vetro	Lg	5,640	m
Perimetro telaio	L_f	5,200	m

Caratteristiche del modulo

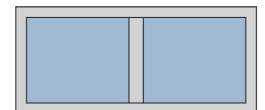
Trasmittanza termica del modulo U 1,598 W/m²K

Ponte termico del serramento

Ponte termico associato	Z1	W - Parete - Tela		
Trasmittanza termica lineica	Ψ	0,112	W/mK	
Lunghezza perimetrale		5,20	m	

Descrizione della finestra: 180*80

Caratteristiche del serramento


Tipologia di serramento -

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Codice: W13

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 180,0 cm Altezza H 80,0 cm

Caratteristiche del telaio

K distanziale K_d **0,000** W/mK Area totale 1,440 m^2 A_{w} Area vetro 0,986 m^2 A_q Area telaio 0,454 m^2 Af Fattore di forma F_f 0,68 Perimetro vetro 5,640 La Perimetro telaio **5,200** m Ιf

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,703 W/m²K

Ponte termico del serramento

Descrizione della finestra: 180*250

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari e delle schermature

Emissività	ε	0,250	-
Fattore di trasmittanza solare	$g_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	g_{gl+sh}	0,227	-

Caratteristiche delle chiusure oscuranti

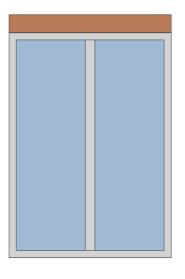
Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	180,0	cm
Altezza H	250,0	cm

Caratteristiche del telaio


K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	4,500	m^2
Area vetro	A_{g}	3,604	m^2
Area telaio	A_f	0,896	m^2
Fattore di forma	F_f	0,80	-
Perimetro vetro	L_g	12,440	m
Perimetro telaio	l e	8.600	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,343 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	<i>M7</i>	Cassonetto	
Trasmittanza termica	U	0,536	W/m^2K
Altezza	H_{cass}	20,0	cm
Larghezza	L_{cass}	180,0	cm
Profondità	P_{cass}	0,0	cm
Area frontale		0,36	m^2

Ponte termico del serramento

Descrizione della finestra: 180*250

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità

Classe 4 secondo Norma
UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 0,55 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

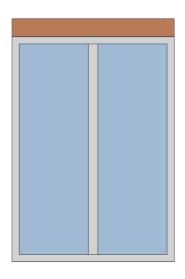
Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 180,0 cm Altezza H 250,0 cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	4,500	m^2
Area vetro	A_g	3,604	m^2
Area telaio	A_f	0,896	m^2
Fattore di forma	F_f	0,80	-
Perimetro vetro	L_g	12,440	m
Perimetro telaio	L_f	8,600	m


Caratteristiche del modulo

Trasmittanza termica del modulo U 1,442 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonetto	
Trasmittanza termica	U	0,546	W/m ² K
Altezza	H_{cass}	20,00	cm
Larghezza	L_{cass}	180,0	cm
Profondità	P_{cass}	0,00	cm
Area frontale		0,36	m^2

Ponte termico del serramento

Ponte termico associato	Z1	W - Parete - Tela		
Trasmittanza termica lineica	Ψ	0,112	W/mK	
Lunghezza perimetrale		8,60	m	

Descrizione della finestra: 120*250

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari e delle schermature

Emissività	ε	0,250	-
Fattore di trasmittanza solare	$\mathbf{g}_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c \text{ est}}$	0,55	-
Fattore trasmissione solare totale	g gl+sh	0,227	-

Caratteristiche delle chiusure oscuranti

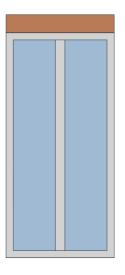
Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	120,0	cm
Altezza H	250,0	cm

Caratteristiche del telaio


K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	3,000	m^2
Area vetro	A_g	2,200	m^2
Area telaio	A_f	0,800	m^2
Fattore di forma	F_f	0,73	-
Perimetro vetro	L_g	11,240	m
Perimetro telaio	Lf	7,400	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,401 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonetto	
Trasmittanza termica	U	0,536	W/m^2K
Altezza	H_{cass}	20,0	cm
Larghezza	L_{cass}	120,0	cm
Profondità	P_{cass}	0,0	cm
Area frontale		0,24	m^2

Ponte termico del serramento

Descrizione della finestra: 120*250

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 0,55 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

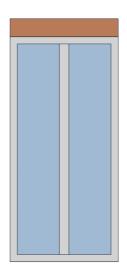
Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 120,0 cm Altezza H 250,0 cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	3,000	m^2
Area vetro	A_g	2,200	m^2
Area telaio	A_f	0,800	m^2
Fattore di forma	F_f	<i>0,73</i>	-
Perimetro vetro	L_g	11,240	m
Perimetro telaio	l f	7.400	m


Caratteristiche del modulo

Trasmittanza termica del modulo U 1,499 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonetto	
Trasmittanza termica	U	0,546	W/m ² K
Altezza	H_{cass}	20,00	cm
Larghezza	L_{cass}	120,0	cm
Profondità	P_{cass}	0,00	cm
Area frontale		0,24	m^2

Ponte termico del serramento

Ponte termico associato	Z1	W - Parete - Tela		
Trasmittanza termica lineica	Ψ	0,112	W/mK	
Lunghezza perimetrale		7,40	m	

Descrizione della finestra: 120*270

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari e delle schermature

Emissività	3	0,250	-
Fattore di trasmittanza solare	$\mathbf{g}_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c \ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	g gl+sh	0,227	-

Caratteristiche delle chiusure oscuranti

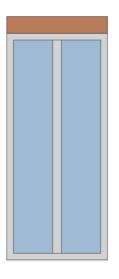
Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{\text{w,e}}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	120,0	cm
Altezza H	270,0	cm

Caratteristiche del telaio


K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	3,240	m^2
Area vetro	A_{g}	2,388	m^2
Area telaio	A_f	0,852	m^2
Fattore di forma	F_f	0,74	-
Perimetro vetro	L_g	12,040	m
Perimetro telaio	L_f	7,800	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,399 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonett	to
Trasmittanza termica	U	0,536	W/m^2K
Altezza	H_{cass}	20,0	cm
Larghezza	L_{cass}	120,0	cm
Profondità	P_{cass}	0,0	cm
Area frontale		0,24	m^2

Ponte termico del serramento

Descrizione della finestra: 120*270

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c inv}$ 0,55 - Fattore tendaggi (estivo) $f_{c est}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

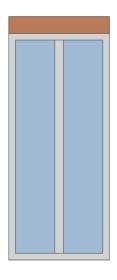
Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 120,0 cm Altezza H 270,0 cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	3,240	m^2
Area vetro	A_g	2,388	m^2
Area telaio	A_f	0,852	m^2
Fattore di forma	F_f	0,74	-
Perimetro vetro	L_g	12,040	m
Perimetro telaio	L_f	7,800	m


Caratteristiche del modulo

Trasmittanza termica del modulo U 1,498 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonetto	
Trasmittanza termica	U	0,546	W/m ² K
Altezza	H_{cass}	20,00	cm
Larghezza	L_{cass}	120,0	cm
Profondità	P_{cass}	0,00	cm
Area frontale		0,24	m^2

Ponte termico del serramento

Ponte termico associato	Z1	W - Paret	e - Telaio
Trasmittanza termica lineica	Ψ	0,112	W/mK
Lunghezza perimetrale		7,80	m

Descrizione della finestra: 300*270

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari e delle schermature

Emissività	ε	0,250	-
Fattore di trasmittanza solare	$g_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,55	-
Fattore trasmissione solare totale	g_{gl+sh}	0,227	-

Caratteristiche delle chiusure oscuranti

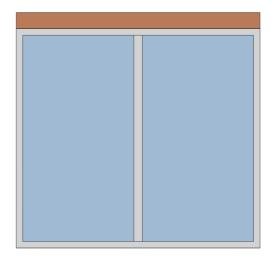
Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{\text{w,e}}$	1,195	W/m^2K

* Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	300,0	cm
Altezza H	270,0	cm

Caratteristiche del telaio


K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	8,100	m^2
Area vetro	A_g	6,960	m^2
Area telaio	A_f	1,140	m^2
Fattore di forma	F_f	0,86	-
Perimetro vetro	L_g	15,640	m
Perimetro telaio	L_f	11,400	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,295 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	<i>M7</i>	Cassonett	to .
Trasmittanza termica	U	0,536	W/m^2K
Altezza	H_{cass}	20,0	cm
Larghezza	L_{cass}	300,0	cm
Profondità	P_{cass}	0,0	cm
Area frontale		0,60	m^2

Ponte termico del serramento

Descrizione della finestra: 300*270

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità

Classe 4 secondo Norma
UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 0,55 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

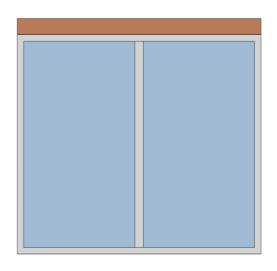
Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza 300,0 cm Altezza H 270,0 cm

Caratteristiche del telaio

K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	8,100	m^2
Area vetro	A_g	6,960	m^2
Area telaio	A_f	1,140	m^2
Fattore di forma	F_f	0,86	-
Perimetro vetro	L_g	<i>15,640</i>	m
Perimetro telaio	Lf	11,400	m


Caratteristiche del modulo

Trasmittanza termica del modulo U 1,394 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	<i>M7</i>	Cassonet	to
Trasmittanza termica	U	0,546	W/m ² K
Altezza	H_{cass}	20,00	cm
Larghezza	L_{cass}	300,0	cm
Profondità	P_{cass}	0,00	cm
Area frontale		0,60	m^2

Ponte termico del serramento

Ponte termico associato	Z1	W - Parete - Telaio
Trasmittanza termica lineica	Ψ	0,112 W/mK
Lunghezza perimetrale		11,40 m

Descrizione della finestra: 70*180

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari e delle schermature

Emissività	ε	0,250	-
Fattore di trasmittanza solare	$\mathbf{g}_{gl,n}$	0,420	-
Fattore tendaggi (invernale)	$f_{c inv}$	0,55	-
Fattore tendaggi (estivo)	$f_{c \text{ est}}$	0,55	-
Fattore trasmissione solare totale	g gl+sh	0,227	-

Caratteristiche delle chiusure oscuranti

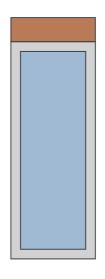
Resistenza termica chiusure		0,12	m ² K/W
f shut		0,6	-
Trasmittanza serramento *	$U_{w,e}$	1,195	W/m ² K

^{*} Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)

Dimensioni e caratteristiche del serramento

Larghezza	<i>70,0</i>	cm
Altezza H	180,0	cm

Caratteristiche del telaio


K distanziale	K_d	0,000	W/mK
Area totale	A_{w}	1,260	m^2
Area vetro	\mathbf{A}_{g}	0,886	m^2
Area telaio	A_f	0,374	m^2
Fattore di forma	F_f	0,70	-
Perimetro vetro	L_g	4,360	m
Perimetro telaio	L_f	5,000	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,527 W/m²K

<u>Cassonetto</u>

Struttura opaca associata	M7	Cassonetto	
Trasmittanza termica	U	0,536	W/m ² K
Altezza	H_{cass}	20,0	cm
Larghezza	L_{cass}	<i>70,0</i>	cm
Profondità	P_{cass}	0,0	cm
Area frontale		0.14	m^2

Ponte termico del serramento

Descrizione della finestra: 70*180

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,250 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 0,55 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 0,55 - Fattore di trasmittanza solare $g_{gl,n}$ 0,420 - Fattore trasmissione solare totale g_{gl+sh} 0,227 -

Caratteristiche delle chiusure oscuranti

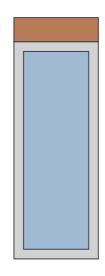
Resistenza termica chiusure **0,12** m²K/W f shut **0,6** -

Dimensioni e caratteristiche del serramento

Larghezza **70,0** cm Altezza H **180,0** cm

Caratteristiche del telaio

K distanziale K_d **0,000** W/mK Area totale 1,260 m^2 A_w Area vetro 0,886 m^2 A_q Area telaio A_f 0,374 m^2 Fattore di forma F_f 0,70 Perimetro vetro 4,360 La Perimetro telaio 5,000 Ιf m


Caratteristiche del modulo

Trasmittanza termica del modulo U 1,623 W/m²K

<u>Cassonetto</u>

Struttura opaca associata M7 Cassonetto Trasmittanza termica U **0,546** W/m²K Altezza **20,00** cm H_{cass} Larghezza Lcass *70,0* cm Profondità Pcass 0,00 cm Area frontale m^2 0,14

Ponte termico del serramento

Ponte termico associato	Z1	W - Paret	e - Telaio
Trasmittanza termica lineica	Ψ	0,112	W/mK
Lunghezza perimetrale		5,00	m

FABBISOGNO DI POTENZA TERMICA INVERNALE secondo UNI EN 12831

Dati climatici della località:

Località	Padenghe sul Garda	
Provincia	Brescia	
Altitudine s.l.m.	127	m
Gradi giorno	2355	
Zona climatica	E	•
Temperatura esterna di progetto	-6,9	°C

Dati geometrici dell'intero edificio:

Superficie in pianta netta	<i>1757,61</i>	m^2
Superficie esterna lorda	<i>3989,17</i>	m^2
Volume netto	4745,73	m^3
Volume lordo	8100,50	m^3
Rapporto S/V	0,49	m ⁻¹

Opzioni di calcolo:

Metodologia di calcolo Vicini presenti Coefficiente di sicurezza adottato 1,00 -

Coefficienti di esposizione solare:

Nord: 1,20

Nord-Est: 1,20 Nord-Ovest: **1,15**

Ovest: 1,10 Est: 1,15

Sud-Ovest: **1,05** Sud-Est: **1,10**

Sud: 1,00

RIASSUNTO DISPERSIONI DEI LOCALI

Opzioni di calcolo:

Metodologia di calcolo Vicini presenti

Coefficiente di sicurezza adottato 1,00 -

Zona 1 - Corpo A fabbisogno di potenza dei locali

Loc	Descrizione	θi [°C]	n [1/h]	Ф _{tr} [W]	Ф _{ve} [W]	Ф _{rh} [W]	Ф _{hl} [W]	Ф _{hl sic} [W]
1	Reception	20,0	2,40	3478	4166	0	7644	7644
2	Preparazione colazione	20,0	2,40	329	950	0	1279	1279
3	Bagno recptionist	20,0	0,47	212	84	0	296	296
4	Wc reception	20,0	0,47	20	49	0	69	69
5	Suite 1	20,0	1,49	840	1324	0	2164	2164
6	Bagno 1	20,0	0,47	59	140	0	199	199
7	Suite 2	20,0	2,00	<i>7</i> 96	1811	0	2607	2607
8	Bagno 2	20,0	0,47	56	131	0	187	187
9	Suite 3	20,0	2,00	<i>878</i>	1477	0	2355	2355
10	Bagno 3	20,0	0,67	81	287	0	368	368
11	Suite 4	20,0	2,60	851	1948	0	<i>27</i> 99	<i>27</i> 99
12	Bagno 4	20,0	0,67	<i>7</i> 9	284	0	363	363
13	Suite 5	20,0	2,60	991	2808	0	<i>37</i> 99	<i>37</i> 99
14	Bagno 5	20,0	0,67	20	72	0	92	92
15	Suite 6	20,0	2,60	960	2807	0	3767	<i>3767</i>
16	Bagno 6	20,0	0,67	20	70	0	90	90
17	App 1 giorno	20,0	2,60	496	1719	0	2214	2214
18	App 1 camera 1	20,0	2,60	625	881	0	1506	1506
19	App 1 camera 2	20,0	2,60	199	636	0	834	834
20	App 1 bagno	20,0	0,67	64	64	0	128	128
21	App 2 Giorno	20,0	2,60	479	1712	0	2191	2191
22	App 2 camera 1	20,0	2,60	610	881	0	1491	1491
23	App 2 camera 2	20,0	2,60	197	626	0	824	824
24	App 2 bagno	20,0	0,67	64	64	0	128	128
47	Area Comune	20,0	1,97	1684	2743	0	4426	4426
48	Deposito comune e bagni	20,0	0,67	431	253	0	683	683
49	Suite 11	20,0	2,60	667	2537	0	3203	3203
50	Bagno 11	20,0	0,67	26	99	0	125	125
51	Suite 12	20,0	2,60	703	2530	0	3233	3233
52	Bagno 12	20,0	0,67	27	101	0	127	127
<i>53</i>	Suite 13	20,0	2,60	618	1778	0	2396	2396
54	Bagno 13	20,0	0,67	46	177	0	223	223
<i>55</i>	Suite 14	20,0	2,60	620	1766	0	2385	2385
56	Bagno 14	20,0	0,67	46	180	0	226	226
<i>57</i>	Suite 15	20,0	2,60	639	2143	0	2783	2783
<i>58</i>	Bagno 15	20,0	0,67	23	87	0	110	110
59	Suite 16	20,0	2,60	643	2150	0	2792	2792
60	Bagno 16	20,0	0,67	23	84	0	107	107
61	Suite 17	20,0	2,60	907	2637	0	3545	3545
62	Bagno 17	20,0	0,67	22	84	0	106	106
63	Suite 18	20,0	2,60	909	2641	0	3550	3550

64	Bagno 18	20,0	0,67	22	83	0	106	106
65	Disimpegno A	20,0	0,67	354	<i>7</i> 89	0	1143	1143

Totale: **20811 47855 0 68665 68665**

Zona 2 - Corpo B fabbisogno di potenza dei locali

Loc	Descrizione	θi [°C]	n [1/h]	Φ _{tr} [W]	Ф _{ve} [W]	Φ _{rh} [W]	Ф _Ы [W]	Φ _{hl sic} [W]
1	Bagno 7	20,0	0,67	116	186	0	302	302
2	Suite 8	20,0	2,60	951	2354	0	3305	3305
3	Suite 7	20,0	2,60	968	2341	0	3310	3310
28	Bagno 8	20,0	0,67	115	184	0	299	299
29	Suite 9	20,0	2,60	861	1910	0	2771	2771
<i>30</i>	Bagno 9	20,0	0,67	81	290	0	371	<i>371</i>
31	Suite 10	20,0	2,60	861	1942	0	2803	2803
32	Bagno 10	20,0	0,67	<i>7</i> 9	281	0	361	361
<i>33</i>	App 3 giorno	20,0	1,97	632	1270	0	1902	1902
34	App 3 camera	20,0	2,60	347	1020	0	1366	1366
35	App 3 bagno	20,0	0,67	24	88	0	112	112
36	App 4 giorno	20,0	2,60	614	1668	0	2283	2283
<i>37</i>	App 4 camera	20,0	2,60	343	1019	0	1362	1362
<i>38</i>	App 4 bagno	20,0	0,67	24	<i>87</i>	0	112	112
39	App 5 giorno	20,0	2,60	496	1693	0	2189	2189
40	App 5 camera 1	20,0	2,60	554	885	0	1438	1438
41	app 5 camera 2	20,0	2,60	274	636	0	909	909
42	App 5 bagno	20,0	0,67	126	64	0	190	190
43	App 6 giorno	20,0	2,60	479	1684	0	2163	2163
44	App 6 camera 1	20,0	2,60	539	881	0	1421	1421
45	App 6 camera 2	20,0	2,60	272	626	0	899	899
46	App 6 bagno	20,0	0,67	126	64	0	190	190
66	Disimpegno B	20,0	0,67	326	<i>753</i>	0	1079	1079
67	App 7 - giorno	20,0	2,60	472	1171	0	1643	1643
68	App 7 - camera	20,0	2,60	290	897	0	1187	1187
69	App 7 - bagno	20,0	0,67	27	103	0	130	130
70	App 8 - giorno	20,0	2,60	474	1168	0	1641	1641
71	App 8 - camera	20,0	2,60	291	897	0	1188	1188
72	App 8 - bagno	20,0	0,67	27	104	0	131	131
73	App 9 - giorno	20,0	2,60	333	1010	0	1343	1343
74	App 9 - camera	20,0	2,60	308	1111	0	1420	1420
<i>75</i>	App 9 - bagno	20,0	0,67	21	<i>78</i>	0	99	99
76	App 10 - giorno	20,0	2,60	335	1014	0	1349	1349
77	App 10 - camera	20,0	2,60	309	1102	0	1410	1410
<i>78</i>	App 10 - bagno	20,0	0,67	22	<i>7</i> 9	0	101	101
<i>7</i> 9	App 11 - giorno	20,0	2,60	330	1042	0	1372	1372
80	App 10 - camera	20,0	2,60	340	1080	0	1420	1420
81	App 11 - bagno	20,0	0,67	23	87	0	110	110
82	App 12 - giorno	20,0	2,60	332	1039	0	1371	1371
83	App 12 - camera	20,0	2,60	341	1086	0	1427	1427
84	App 8 - bagno	20,0	0,67	23	86	0	109	109
85	App 13 - giorno	20,0	2,60	<i>37</i> 9	1608	0	1988	1988
86	App 13 - camera 1	20,0	2,60	399	<i>878</i>	0	1277	1277
87	App 13 - camera 2	20,0	2,60	257	648	0	906	906
88	App 13 - bagno	20,0	0,67	122	64	0	186	186
89	App 14 - giorno	20,0	2,60	381	1608	0	1989	1989
90	App 14 - camera 1	20,0	2,60	398	875	0	1273	1273

FORNONI ING. LUCA

VIA VITTORIO EMANUELE II, 1 - 25039 TRAVAGLIATO (BS)

	Totale: Totale Edifico:		36634	89329	0	125963	125963	
			15823	41475	0	<i>57</i> 298	57298	
92	App 14 - bagno	20,0	0,67	122	64	0	186	186
91	App 14 - camera 2	20,0	2,60	<i>257</i>	648	0	905	905

Legenda simboli

 θ i Temperatura interna del locale

n Ricambio d'aria del locale

 $\begin{array}{ll} \Phi_{tr} & \text{Potenza dispersa per trasmissione} \\ \Phi_{ve} & \text{Potenza dispersa per ventilazione} \\ \Phi_{rh} & \text{Potenza dispersa per intermittenza} \end{array}$

 $\Phi_{hl} \qquad \quad \text{Potenza totale dispersa}$

 $\Phi_{hl \; sic}$ Potenza totale moltiplicata per il coefficiente di sicurezza

RIASSUNTO DISPERSIONI DELLE ZONE

Opzioni di calcolo:

Metodologia di calcolo **Vicini presenti**

Coefficiente di sicurezza adottato 1,00 -

Dati geometrici delle zone termiche:

Zona	Descrizione	V [m³]	V _{netto} [m³]	S _u [m²]	S _{lorda} [m²]	S [m²]	S/V [-]
1	Corpo A	4450,39	2618,02	969,58	1207,83	2211,89	0,50
2	Corpo B	3650,11	2127,70	788,03	994,25	1777,28	0,49

Totale: 8100,50 4745,73 1757,61 2202,07 3989,17 0,49

Fabbisogno di potenza delle zone termiche

Zona	Descrizione	Ф _{tr} [W]	Φ _{ve} [W]	Φ _{rh} [W]	Ф _h [W]	Φ _{hl sic} [W]
1	Corpo A	20811	47855	0	68665	68665
2	Corpo B	15823	41475	0	<i>57</i> 298	<i>57298</i>

Totale: **36634 89329 0 125963 125963**

Legenda simboli

 $\begin{array}{ll} V & \quad \ \ Volume \ lordo \\ V_{netto} & \quad \ \ Volume \ netto \\ \end{array}$

 S_u Superficie in pianta netta S_{lorda} Superficie in pianta lorda

S Superficie esterna lorda (senza strutture di tipo N)

S/V Fattore di forma

 $\begin{array}{ll} \Phi_{tr} & \quad \text{Potenza dispersa per trasmissione} \\ \Phi_{ve} & \quad \text{Potenza dispersa per ventilazione} \\ \Phi_{rh} & \quad \text{Potenza dispersa per intermittenza} \end{array}$

Φ_{hl} Potenza totale dispersa

FABBISOGNI E CONSUMI TOTALI

Edificio : Edificio ricettivo	DPR 412/93	E.1 (3)	Superficie utile	1757,61	m ²	
-------------------------------	------------	---------	------------------	---------	----------------	--

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	40025	58647	98672	22,77	33,37	56,14
Acqua calda sanitaria	19737	72861	92598	11,23	41,45	52,68
Raffrescamento	<i>17</i> 9	6114	6293	0,10	3,48	3,58
Illuminazione	31942	37616	69558	18,17	21,40	39,58
TOTALE	91883	175237	267121	52,28	99,70	151,98

Vettori energetici ed emissioni di CO2

Vettore energetico	Consumo	U.M.	CO ₂ [kg/anno]	Servizi
Energia elettrica	47120	kWhel/anno	21675	Riscaldamento, Acqua calda sanitaria, Raffrescamento, Illuminazione

Zona 1 : Corpo A	DPR 412/93	E.1 (3)	Superficie utile	969,58	m ²	
------------------	------------	---------	------------------	--------	----------------	--

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	24592	35024	59616	25,36	36,12	61,49
Acqua calda sanitaria	9869	36430	46299	10,18	37,57	47,75
Raffrescamento	100	3357	3457	0,10	3,46	3,57
Illuminazione	17188	20174	37362	17,73	20,81	38,53
TOTALE	51748	94986	146734	53,37	97,97	151,34

Vettori energetici ed emissioni di CO₂

Vettore energetico	Consumo	U.M.	CO₂ [kg/anno]	Servizi
Energia elettrica	26537	kWhel/anno	12207	Riscaldamento, Acqua calda sanitaria, Raffrescamento, Illuminazione

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	15433	23623	<i>39057</i>	19,58	29,98	49,56
Acqua calda sanitaria	9869	36430	46299	12,52	46,23	<i>58,75</i>
Raffrescamento	<i>7</i> 9	2756	2836	0,10	3,50	3,60
Illuminazione	14754	17441	32196	18,72	22,13	40,86
TOTALE	40135	80252	120387	50,93	101,84	152,77

Vettori energetici ed emissioni di CO₂

Vettore energetico	Consumo	U.M.	CO ₂ [kg/anno]	Servizi
Energia elettrica	20582	kWhel/anno	9468	Riscaldamento, Acqua calda sanitaria, Raffrescamento, Illuminazione

RIASSUNTO VERIFICHE DI LEGGE

Impianto: Edificio ricettivo

Verifiche secondo: DDUO 18.12.19 n. 18546

Fase Fase II – 1 Gennaio 2017 per tutti gli edifici Intervento Edifici di nuova costruzione

Elenco verifiche:

Tipo verifica	Esito	Valore ammissibile		Valore calcolato	u.m.
Verifica termoigrometrica	Positiva				
Verifica sulla temperatura critica interna del ponte termico	Positiva				
Trasmittanza media divisori e strutture locali non climatizzati	Positiva				
Indice di prestazione termica utile per riscaldamento	Positiva	42,03	>	37,06	kWh/m²
Indice di prestazione termica utile per il raffrescamento	Positiva	25,31	^	19,69	kWh/m²
Indice di prestazione energetica globale	Positiva	200,96	>	151,98	kWh/m²
Area solare equivalente estiva per unità di superficie utile	Positiva				
Coefficiente medio globale di scambio termico per trasmissione (H't)	Positiva				
Efficienza media stagionale dell'impianto per servizi riscaldamento, acqua calda sanitaria e raffrescamento	Positiva				

<u> Dettagli - Verifica termoigrometrica :</u>

Cod.	Tipo	Descrizione	Condensa superficiale	Condensa interstiziale
M1	T	Muratura perimetrale 1	Positiva	Positiva
M4	N	Muro interno 1	Positiva	Positiva
M5	N	Muro interno 2	Positiva	Positiva
M6	U	Muratura su ct	Positiva	Positiva
M7	T	Cassonetto	Positiva	Positiva
M9	N	Porta ingresso p1	Positiva	Positiva
P1	G	Pavimento su terreno 1	Positiva	Positiva
P2	G	Pavimento su terreno 2	Positiva	Positiva
P3	N	Solaio interpiano	Positiva	Positiva
P4	T	Solaio interpiano su esterno	Positiva	Positiva
<i>S</i> 1	N	Solaio interpiano	Positiva	Positiva
<i>S</i> 2	T	Solaio interpiano terrazza	Positiva	Positiva
<i>S3</i>	T	Copertura	Positiva	Positiva

<u> Dettagli - Verifica sulla temperatura critica interna del ponte termico :</u>

Cod.	Descrizione	Verifica rischio muffa
<i>Z</i> 1	W - Parete - Telaio	Positiva
<i>Z</i> 2	GF - Parete - Solaio controterra	Positiva
<i>Z</i> 4	B - Parete - Balcone	Positiva
<i>Z</i> 5	R - Parete - Copertura	Positiva
<i>Z</i> 8	P - Parete - Pilastro	Positiva

<u> Dettagli - Trasmittanza media divisori e strutture locali non climatizzati :</u>

Cod.	Tipo	Descrizione	Verifica	U amm. [W/m²K]		U media [W/m²K]	U [W/m²K]
M4	N	Muro interno 1	Positiva	0,800	IV	0,301	0,268
<i>S</i> 1	N	Solaio interpiano	Positiva	0,800	IV	0,511	0,450
M5	N	Muro interno 2	Positiva	0,800	N	0,305	0,268
P3	N	Solaio interpiano	Positiva	0,800	<u>N</u>	0,489	0,413

<u>Dettagli - Indice di prestazione termica utile per riscaldamento :</u>

Riferimento: DDUO 18.12.19 n. 18546, paragrafo 6, punto 6.12

Su	Qh,nd amm.	Qh,nd
[m²]	[kWh]	[kWh]
1757,61	73868,65	65137,85

<u>Dettagli - Indice di prestazione termica utile per il raffrescamento :</u>

Riferimento: DDUO 18.12.19 n. 18546, paragrafo 6, punto 6.12

Su	Qc,nd amm.	Qc,nd	
[m²]	[kWh]	[kWh]	
1757,61	44490,81	34605,02	

<u> Dettagli - Indice di prestazione energetica globale :</u>

Riferimento: DDUO 18.12.19 n. 18546, paragrafo 6, punto 6.12

Servizio	EP ed. riferimento [kWh/m²]	EP [kWh/m²]
Riscaldamento	69,83	56,14
Acqua calda sanitaria	69,93	52,68
Raffrescamento	16,02	3,58
Ventilazione	0,00	0,00
Illuminazione	45,17	39,58
Trasporto	0,00	0,00
TOTALE	200,96	151,98

Dettagli - Area solare equivalente estiva per unità di superficie utile :

Nr.	Descrizione	Verifica	Asol,eq,amm [-]		Asol,eq [-]	Asol [m²]	Su [m²]
1	Corpo A	Positiva	0,040	≥	0,027	26,12	969,58
2	Corpo B	Positiva	0,040	≥	0,020	16,14	788,03

<u>Dettagli – Coefficiente medio globale di scambio termico per trasmissione (H't):</u>

Nr.	Descrizione	Cat. DPR. 412	H't amm. [W/m²K]		H't [W/m²K]
1	Corpo A	E.1 (3)	0,55	2	0,31
2	Corpo B	E.1 (3)	0,55	2	0,29

<u>Dettagli – Efficienza media stagionale dell'impianto per servizi riscaldamento, acqua calda sanitaria e raffrescamento :</u>

Nr.	Servizi	Verifica	ηg amm [%]		η g [%]
1	Riscaldamento	Positiva	60,1	VI	61,3
2	Riscaldamento	Positiva	60,2	≤	63,5
3	Acqua calda sanitaria	Positiva	54,6	≤	72,4
4	Raffrescamento	Positiva	139,3	≤	483,8
5	Raffrescamento	Positiva	139,2	≤	436,0

Verifiche secondo: DLgs 8 Novembre 2021 n.199

Intervento Edificio di nuova costruzione

Verifiche secondo DLgs.n. 199/2021, Allegato 3, punto 2

[**X**]

Elenco verifiche:

Tipo verifica	Esito	Valore ammissibile		Valore calcolato	u.m.
Copertura totale da fonte rinnovabile	Positiva	60,00	\	69,66	%
Copertura acqua sanitaria da fonte rinnovabile	Positiva	60,00	<	78,69	%
Verifica potenza elettrica installata	Positiva	54,44	≤	55,00	kW

<u> Dettagli - Copertura totale da fonte rinnovabile :</u>

Riferimento: DLgs 8.11.2021 n. 199. Allegato 3 - paragrafo 2

Servizio	Qp ren [kWh]	Qp nren [kWh]	Qp tot [kWh]
Riscaldamento	58646,96	40025,19	98672,15
Acqua calda sanitaria	72860,94	19737,09	92598,03
Raffrescamento	6113,79	178,80	6292,60
TOTALI	137621,70	59941,08	197562,78

[%] copertura = [(137621,70) / (197562,78)] * 100 = 69,66

Dettagli - Copertura acqua sanitaria da fonte rinnovabile :

Riferimento: DLgs 8.11.2021 n. 199. Allegato 3 - paragrafo 2

Servizio	Qp ren [kWh]	Qp nren [kWh]	Qp tot [kWh]
Acqua calda sanitaria	72860,94	19737,09	92598,03

[%] copertura = [(72860,94) / (92598,03)] * 100 = 78,69

<u> Dettagli - Verifica potenza elettrica installata :</u>

Riferimento: DLgs 8.11.2021 n. 199. Allegato 3 - paragrafo 3

Superficie in pianta a livello del terreno = 1088,80 m²

K = 0,050

Potenza minima K * S = 54,44 kW